Skip to main content
Log in

A multinomial generalized linear mixed model for clustered competing risks data

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Clustered competing risks data are a complex failure time data scheme. Its main characteristics are the cluster structure, which implies a latent within-cluster dependence between its elements, and its multiple variables competing to be the one responsible for the occurrence of an event, the failure. To handle this kind of data, we propose a full likelihood approach, based on generalized linear mixed models instead the usual complex frailty model. We model the competing causes in the probability scale, in terms of the cumulative incidence function (CIF). A multinomial distribution is assumed for the competing causes and censorship, conditioned on the latent effects that are accommodated by a multivariate Gaussian distribution. The CIF is specified as the product of an instantaneous risk level function with a failure time trajectory level function. The estimation procedure is performed through the R package Template Model Builder, an C++ based framework with efficient Laplace approximation and automatic differentiation routines. A large simulation study was performed, based on different latent structure formulations. The model fitting was challenging and our results indicated that a latent structure where both risk and failure time trajectory levels are correlated is required to reach reasonable estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen PK, Geskus RB, de Witte T, Putter H (2012) Competing risks in epidemiology: possibilities and pitfalls. Int J Epidemiol 31(1):861–870

    Google Scholar 

  • Bonat WH (2018) Multiple response variables regression models in R: the mcglm package. J Stat Softw 84(4)

  • Bonat WH, Jørgensen B (2016) Multivariate covariance generalized linear models. J Roy Stat Soc Ser C (Appl Stat) 65(5):649–675

    MathSciNet  Google Scholar 

  • Bonat WH, Ribeiro PJ Jr (2016) Practical likelihood analysis for spatial generalized linear mixed models. Environmetrics 27(1):83–89

    MathSciNet  Google Scholar 

  • Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88(421):9–25

    Google Scholar 

  • Cederkvist L, Holst KK, Andersen KK, Scheike TH (2019) Modeling the cumulative incidence function of multivariate competing risks data allowing for within-cluster dependence of risk and timing. Biostatistics 20(2):199–217

    MathSciNet  Google Scholar 

  • Cheng Y, Fine JP (2012) Cumulative incidence association models for bivariate competing risks data. J Roy Stat Soc Ser B (Methodol) 74(2):183–202

    MathSciNet  Google Scholar 

  • Cheng Y, Fine JP, Kosorok MRJ (2007) Nonparametric association analysis of bivariate competing-risks data. J Am Stat Assoc 102(480):1407–1415

    MathSciNet  Google Scholar 

  • Cheng Y, Fine JP, Kosorok MRJ (2009) Nonparametric association analysis of exchangeable clustered competing risks data. Biometrics 65(1):385–393

    MathSciNet  Google Scholar 

  • Clayton DG (1978) A model for association in bivariate life tables and its application in epidemiological studies of familial rendency in chronic disease incidence. Biometrika 65(1):141–151

    MathSciNet  Google Scholar 

  • Cox DR, Reid N (2004) A note on pseudolikelihood constructed from marginal densities. Biometrika 91(3):729–737

    MathSciNet  Google Scholar 

  • Dennis JE, Gay DM, Welsch RE (1981) An adaptive nonlinear least-squares algorithm. ACM Trans Math Softw 7(3):348–368

    Google Scholar 

  • Diaconis P (2009) The Markov chain Monte Carlo revolution. Bull (New Ser) Am Math Soc 46(2):179–205

    MathSciNet  Google Scholar 

  • Embrechts P (2009) Copulas: a personal view. J Risk Insur 76(3):639–650

    Google Scholar 

  • Fine JP (1999) Analysing competing risks data with transformation models. J Roy Stat Soc Ser B (Methodol) 61(4):817–830

    MathSciNet  Google Scholar 

  • Fine JP, Gray RJ (1999) A proportional hazards models for the subdistribution of a competing risk. J Am Stat Assoc 94(446):496–509

    MathSciNet  Google Scholar 

  • Gay DM (1990) Usage summary for selected optimization routines, technical report, computing science technical report 153. AT &T Bell Laboratories, Murray Hill

    Google Scholar 

  • Gelfand AE, Smith AFM (1990) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85(410):398–409

    MathSciNet  Google Scholar 

  • Gerds TA, Scheike TH, Andersen PK (2012) Absolute risk regression for competing risks: interpretation, link functions and prediction. Stat Med 31(29):3921–3930

    MathSciNet  Google Scholar 

  • He Y, Kim S, Mao L, Ahn KW (2022) Marginal semiparametric transformation models for clustered multivariate competing risks data. Stat Med 41:5349–5364

    MathSciNet  Google Scholar 

  • Hoffman MD, Gelman A (2014) The no-u-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J Mach Learn Res 15(47):1593–1623

    MathSciNet  Google Scholar 

  • Hougaard P (2000) Analysis of multivariate survival data. Springer, New York

    Google Scholar 

  • Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Klein JP (1992) Semiparametric estimation of random effects using cox model based on the em algorithm. Biometrics 48(1):795–806

    MathSciNet  Google Scholar 

  • Kristensen K, Nielsen A, Berg CW, Skaug HJ, Bell BM (2016) TMB: automatic differentiation and Laplace approximation. J Stat Softw 70(5):1–21

    Google Scholar 

  • Krupskii P, Joe H (2013) Factor copula models for multivariate data. J Multivar Anal 120(1):85–101

    MathSciNet  Google Scholar 

  • Kuk AYC (1992) A semiparametric mixture model for the analysis of competing risks data. Aust J Stat 34(2):169–180

    MathSciNet  Google Scholar 

  • Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38(4):963–974

    Google Scholar 

  • Larson MG, Dinse GE (1985) A mixture model for the regression analysis of competing risks data. J Roy Stat Soc Ser C (Appl Stat) 34(3):201–211

    MathSciNet  Google Scholar 

  • Liang KY, Self S, Bandeen-Roche KJ, Zeger SL (1995) Some recent developments for regression analysis of multivariate failure time data. Lifetime Data Anal 1(1):403–415

    Google Scholar 

  • Lindsay BG (1988) Composite likelihood methods. Comtemp Math 80(1):221–239

    MathSciNet  Google Scholar 

  • Masarotto G, Varin C (2012) Gaussian copula marginal regression. Electron J Stat 6(1):1517–1549

    MathSciNet  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, second, edition. Chapman & Hall, London

    Google Scholar 

  • McCulloch CE, Searle SR (2001) Generalized, linear, and mixed models. Wiley, New York

    Google Scholar 

  • Molenberghs G, Verbeke G (2005) Models for discrete longitudinal data. Springer, New York

    Google Scholar 

  • Monnahan C, Kristensen K (2018) No-U-turn sampling for fast Bayesian inference in ADMB and TMB: introducing the adnuts and tmbstan R packages. PloS ONE 13(5)

  • Naskar M, Das K, Ibrahim JG (2005) A semiparametric mixture model for analyzing clustered competing risks data. Biometrics 61(3):729–737

    MathSciNet  Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc Ser A 135(3):370–384

    Google Scholar 

  • Nielsen GG, Gill RD, Andersen PK, Sørensen TIA (1992) A counting process approach to maximum likelihood estimation in frailty models. Scand J Stat 19(1):25–43

    MathSciNet  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical optimization, springer series in operations research and financial engineering, 2nd edn. Springer, New York

    Google Scholar 

  • Petersen JH (1998) An additive frailty model for correlated life times. Biometrics 54(1):646–661

    Google Scholar 

  • Peyré G (2020) Course notes on optimization for machine learning. https://mathematical-tours.github.io/book-sources/optim-ml/OptimML.pdf. CNRS & DMA, École Normale Supérieure

  • Prentice RL, Kalbfleisch JD, Peterson AV Jr, Flournoy N, Farewell VT, Breslow NE (1978) The analysis of failure times in the presence of competing risks. Biometrics 1(1):541–554

    Google Scholar 

  • R Core Team(2021) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/

  • Scheike T, Sun Y (2012) On cross-odds ratio for multivariate competing risks data. Biostatistics 13(4):680–694

    Google Scholar 

  • Scheike T. H., Sun Y., Zhang M.-J., Jensen T. K. (2010) A semiparametric random effects model for multivariate competing risks data. Biometrika 97(1):133–145. https://doi.org/10.1093/biomet/asp082

    Article  MathSciNet  Google Scholar 

  • Shi H, Cheng Y, Jeong JH (2013) Constrained parametric model for simultaneous inference of two cumulative incidence functions. Biom J 55(1):82–96

    MathSciNet  Google Scholar 

  • Shih JH, Albert PS (2009) Modeling familial association of ages at onset of disease in the presence of competing risk. Biometrics 66(4):1012–1023

    MathSciNet  Google Scholar 

  • Shun Z, McCullagh P (1995) Laplace approximation of high dimentional integrals. J Roy Stat Soc Ser B (Methodol) 57(4):749–760

    Google Scholar 

  • Stan Development Team (2019) Stan modeling language users guide and reference manual, Version 2.26. https://mc-stan.org

  • Stan Development Team (2020) RStan: the R interface to Stan. https://mc-stan.org/. R package version 2.21.2

  • Therneau TM, Grambsch PM (2000) Modeling survival data: extending the cox model. Springer, New York

    Google Scholar 

  • Tierney L, Kadane J (1986) Accurate approximations for posterior moments and marginal densities. J Am Stat Assoc 81(393):82–86

    MathSciNet  Google Scholar 

  • Varin C, Reid N, Firth D (2011) An overview of composite likelihood methods. Stat Sin 21(1):5–42

    MathSciNet  Google Scholar 

  • Vaupel JW, Manton KG, Stallard E (1979) The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16(1):439–454

    Google Scholar 

  • Wood SN (2015) Core statistics. Textbooks, IMS, Institute of Mathematical Statistics, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Aparecido Laureano.

Additional information

Communicated by Enea G. Bongiorno.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 2941 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laureano, H.A., Petterle, R.R., Silva, G.P.d. et al. A multinomial generalized linear mixed model for clustered competing risks data. Comput Stat 39, 1417–1434 (2024). https://doi.org/10.1007/s00180-023-01353-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-023-01353-5

Keywords

Navigation