Skip to main content
Log in

Testing for no effect via splines

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

A spline-based test statistic for a constant mean function is proposed based on the penalized residual sum-of-squares difference between the null model and a B-spline model in which the regression function is approximated with P-splines approach. When the number of knots is fixed, the limiting null distribution of the test statistic is shown to be the distribution of a linear combination of independent chi-squared random variables, each with one degree of freedom. A smoothing parameter is selected by setting a specified value equal to the expected value of the test statistic under the null hypothesis. Simulation experiments are conducted to study the proposed spline-based test statistic’s finite-sample properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcalá JT, Cristóbal JA, González-Manteiga W (1999) Goodness-of-fit test for linear models based on local polynomials. Stat Probab Lett 42: 39–46

    Article  MATH  Google Scholar 

  • Barry D, Hartigan J (1990) An omnibus test for departures from constant mean. Ann Stat 18: 1340–1357

    Article  MathSciNet  MATH  Google Scholar 

  • Buckley M (1991) Detecting a smooth signal: optimality of cusum based procedures. Biometrika 78: 253–262

    Article  MathSciNet  Google Scholar 

  • Buja A, Hastie T, Tibshirani R (1989) Linear smoother and additive models (with Discussion). Ann Stat 17: 453–555

    Article  MathSciNet  MATH  Google Scholar 

  • Castaño-Martínez A, López-Blázquez F (2005) Distribution of a sum of weighted central chi-square variables. Commun Stat Theory Methods 34: 515–524

    Article  MATH  Google Scholar 

  • Chen JC (1994a) Testing goodness of fit of polynomial models via spline smoothing techniques. Stat Probab Lett 19: 65–76

    Article  MATH  Google Scholar 

  • Chen JC (1994b) Testing for no effect in nonparametric regression via spline smoothing techniques. Ann Inst Stat Math 45: 251–265

    Article  Google Scholar 

  • Cox D, Koh E (1989) A smoothing spline based test of model adequacy in polynomial regression. Ann Inst Stat Math 41: 383–400

    Article  MathSciNet  MATH  Google Scholar 

  • Cox D, Koh E, Wahba G, Yandell B (1988) Testing the (parametric) null model hypothesis in (semiparametric) partial and generalized spline models. Ann Stat 16: 113–119

    Article  MathSciNet  MATH  Google Scholar 

  • Davies RB (1973) Numerical inversion of a characteristic function. Biometrika 60: 415–417

    Article  MathSciNet  MATH  Google Scholar 

  • Davies RB (1980) The distribution of a linear combination of χ2 random variables. Appl Stat 29: 323–333

    Article  MATH  Google Scholar 

  • de Boor C (2001) A practical guide to splines, Revised edition. Applied Mathematical Sciences, vol 27. Springer, New York

    Google Scholar 

  • Eilers PHC, Marx BD (1996) Flexible smoothing with B-splines and penalties (with Discussion). Stat Sci 11: 89–121

    Article  MathSciNet  MATH  Google Scholar 

  • Eubank RL (2000) Testing for no effect by cosine series methods. Scand J Stat 27: 747–763

    Article  MathSciNet  MATH  Google Scholar 

  • Eubank RL, Hart JD (1993) Commonality of cusum, von Neumann and smoothing-based goodness-of-fit tests. Biometrika 80: 89–98

    Article  MathSciNet  MATH  Google Scholar 

  • Eubank RL, LaRiccia VN (1993) Testing for no effect in non-parametric regression. J Stat Plan Inference 36: 1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Eubank RL, Li CS, Wang S (2005) Testing lack-of-fit of parametric regression models using nonparametric regression techniques. Statistica Sinica 15: 135–152

    MathSciNet  MATH  Google Scholar 

  • Eubank RL, Spiegelman C (1990) Testing the goodness-of-fit of a linear model via nonparametric regression techniques. J Am Stat Assoc 85: 387–392

    MathSciNet  MATH  Google Scholar 

  • Gasser T, Sroka L, Jennen-Steinmetz C (1986) Residual variance and residual pattern in nonlinear regression. Biometrika 73: 625–633

    Article  MathSciNet  MATH  Google Scholar 

  • Härdle W, Mammen M (1993) Comparing nonparametric versus parametric regression fits. Ann Stat 21: 1926–1947

    Article  MATH  Google Scholar 

  • Imhof JP (1961) Computing the distribution of quadratic forms in normal variables. Biometrika 48: 419–426

    MathSciNet  MATH  Google Scholar 

  • Li CS (1999) Testing lack of fit of regression models under heteroscedasticity. Can J Stat 27: 485–496

    Article  MATH  Google Scholar 

  • Li CS (2003) A lack-of-fit test for heteroscedastic regression models via cosine-series smoothers. Aust NZ J Stat 45: 477–489

    Article  MATH  Google Scholar 

  • Li CS (2005a) Using local linear kernel smoothers to test the lack of fit of nonlinear regression models. Stat Methodol 2: 267–284

    Article  MathSciNet  Google Scholar 

  • Li CS (2005b) Testing lack of fit for heteroscedastic nonlinear regression models via locally weighted least squares regression. Far East J Theor Statist 16: 29–54

    MATH  Google Scholar 

  • Lindstrom M (1999) Penalized estimation of free-knot splines. J Computat Graph Stat 8: 333–352

    MathSciNet  Google Scholar 

  • Müller HG (1992) Goodness-of-fit diagnostics for regression models. Scand J Stat 19: 157–172

    MATH  Google Scholar 

  • Raz J (1990) Testing for no effect when estimating a smooth function by nonparametric regression: a randomization approach. J Am Stat Assoc 85: 132–138

    MathSciNet  Google Scholar 

  • Ruppert D (2002) Selecting the number of knots for penalized splines. J Computat Graph Stat 11: 735–757

    Article  MathSciNet  Google Scholar 

  • Scheffé H (1959) The analysis of variance. Wiley, New York

    MATH  Google Scholar 

  • Sen PK, Singer JM (1993) Large sample methods in statistics: an introduction with applications. Chapman and Hall, London

    MATH  Google Scholar 

  • Sheil J, O’Muircheartaigh I (1977) The distribution of non-negative quadratic forms in normal variables. Appl Stat 26: 92–98

    Article  Google Scholar 

  • Smith PL (1979) Splines as a useful and convenient statistical tool. Am Stat 33: 57–62

    MATH  Google Scholar 

  • Wold S (1974) Spline functions in data analysis. Technometrics 16: 1–11

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Shang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, CS. Testing for no effect via splines. Comput Stat 27, 343–357 (2012). https://doi.org/10.1007/s00180-011-0260-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-011-0260-6

Keywords

Navigation