Skip to main content
Log in

A novel framework using FEM and machine learning models with experimental verification for Inconel-718 rapid part qualification by laser powder bed fusion

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study establishes a novel printability criterion for Inconel-718 parts by laser power bed fusion. For this purpose, the regions with D/t ≤ 1.15, L/W > 2.1, and W/D = 2.0 have been identified with lack-of-fusion, balling, and keyhole defects. Regimes within the processing maps related with defects have been regarded as a melt pool geometry function, derived using a FEM model with temperature-dependent thermophysical properties. The data was collected, via design of experiment technique, using validated simulation model. Following that, the acquired data was utilized to train and test a machine learning model based on a backpropagation artificial neural network (ANN). By linking melt pool dimensional ratios to defects, the validated ANN model was used to produce processing maps. The processing maps were validated using experimental analyses, which revealed a consistent correlation between experiments and simulations. The proposed processing maps can be utilized to quickly quantify the Inconel-718 parts generated by the LPBF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sing SL, Yeong WY (2020) Laser powder bed fusion for metal additive manufacturing: perspectives on recent developments. Virtual Phys Prototyp 15:359–370. https://doi.org/10.1080/17452759.2020.1779999

    Article  Google Scholar 

  2. Jinoop AN, Subbu SK, Kumar RA (2018) Mechanical and microstructural characterisation on direct metal laser sintered Inconel 718. Int J Addit Subtractive Mater Manuf 2:1. https://doi.org/10.1504/IJASMM.2018.093250

    Article  Google Scholar 

  3. Shi J, Zhao B, He T, Tu L, Lu X, Xu H (2023) Tribology and dynamic characteristics of textured journal-thrust coupled bearing considering thermal and pressure coupled effects. Tribol Int 180:108292. https://doi.org/10.1016/j.triboint.2023.108292

  4. Zhang L, Xiong D, Su Z, Li J, Yin L, Yao Z, Zhang H (2022) Molecular dynamics simulation and experimental study of tin growth in SAC lead-free microsolder joints under thermomechanical-electrical coupling. Mater Today Commun 33:104301. https://doi.org/10.1016/j.mtcomm.2022.104301

  5. Zhang P, Liu Z, Yue X, Wang P, Zhai Y (2022) Water jet impact damage mechanism and dynamic penetration energy absorption of 2A12 aluminum alloy. Vacuum 206:111532. https://doi.org/10.1016/j.vacuum.2022.111532

  6. Gorji NE, O’Connor R, Brabazon D (2021) XPS and SEM characterization for powder recycling within 3d printing process. In: 24th International Conference on Material Forming (ESAFORM 2021), pp 403/1–403/9

    Google Scholar 

  7. Anush Raj B, Winowlin Jappes JT, Adam Khan M et al (2020) Direct metal laser sintered (DMLS) process to develop Inconel 718 alloy for turbine engine components. Optik (Stuttg) 202:163735. https://doi.org/10.1016/J.IJLEO.2019.163735

    Article  Google Scholar 

  8. Delgado Camacho D, Clayton P, O’Brien WJ et al (2018) Applications of additive manufacturing in the construction industry—a forward-looking review. Autom Constr 89:110–119. https://doi.org/10.1016/J.AUTCON.2017.12.031

    Article  Google Scholar 

  9. Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928. https://doi.org/10.1007/S11665-014-0958-Z/FIGURES/9

    Article  Google Scholar 

  10. Maleki E, Bagherifard S, Bandini M, Guagliano M (2021) Surface post-treatments for metal additive manufacturing: progress, challenges, and opportunities. Addit Manuf 37:101619. https://doi.org/10.1016/J.ADDMA.2020.101619

    Article  Google Scholar 

  11. Bassoli E, Sola A, Celesti M et al (2018) Development of laser-based powder bed fusion process parameters and scanning strategy for new metal alloy grades: a holistic method formulation. Mater 11:2356. https://doi.org/10.3390/MA11122356

    Article  Google Scholar 

  12. Mahmood MA, Ur Rehman A, Khraisheh M (2023) On the development of smart framework for printability maps in additive manufacturing of AISI 316L stainless steel. 3D Print Addit Manuf. https://doi.org/10.1089/3dp.2023.0016

  13. Pérez-Ruiz JD, de Lacalle LNL, Urbikain G et al (2021) On the relationship between cutting forces and anisotropy features in the milling of LPBF Inconel 718 for near net shape parts. Int J Mach Tools Manuf 170:103801. https://doi.org/10.1016/J.IJMACHTOOLS.2021.103801

    Article  Google Scholar 

  14. Snow Z, Nassar AR, Reutzel EW (2020) Invited review article: review of the formation and impact of flaws in powder bed fusion additive manufacturing. Addit Manuf 36:101457. https://doi.org/10.1016/J.ADDMA.2020.101457

    Article  Google Scholar 

  15. Pérez-Ruiz J, González-Barrio H, Sanz-Calle M et al (2023) Machining stability improvement in LPBF printed components through stiffening by crystallographic texture control. CIRP Ann 72:141–144. https://doi.org/10.1016/J.CIRP.2023.03.025

    Article  Google Scholar 

  16. Pérez-Ruiz JD, Marin F, Martínez S et al (2022) Stiffening near-net-shape functional parts of Inconel 718 LPBF considering material anisotropy and subsequent machining issues. Mech Syst Signal Process 168:108675. https://doi.org/10.1016/J.YMSSP.2021.108675

    Article  Google Scholar 

  17. Liu L, Wang D, Deng G et al (2022) Laser additive manufacturing of a 316L/CuSn10 multimaterial coaxial nozzle to alleviate spattering adhesion and burning effect in directed energy deposition. J Manuf Process 82:51–63. https://doi.org/10.1016/J.JMAPRO.2022.07.038

    Article  Google Scholar 

  18. Tariq U, Joy R, Wu S-H et al (2023) A state-of-the-art digital factory integrating digital twin for laser additive and subtractive manufacturing processes. Rapid Prototyp J. https://doi.org/10.1108/RPJ-03-2023-0113

  19. Lu C, Gao R, Yin L, Zhang B (2023) Human-Robot Collaborative Scheduling in Energy-efficient Welding Shop. IEEE Trans Industr Inform. https://doi.org/10.1109/TII.2023.3271749

  20. Fang JX, Wang JX, Wang YJ, He HT, Zhang DB, Cao Y (2022) Microstructure evolution and deformation behavior during stretching of a compositionally inhomogeneous TWIP-TRIP cantor-like alloy by laser powder deposition. Mater Sci Eng A 847:143319. https://doi.org/10.1016/j.msea.2022.143319

  21. Zhang P, Wang S, Lin Z, Yue X, Gao Y, Zhang S, Yang H (2023) Investigation on the mechanism of micro-milling CoCrFeNiAlX high entropy alloys with end milling cutters. Vacuum 211:111939. https://doi.org/10.1016/j.vacuum.2023.111939

  22. Zhao Y, Jing J, Chen L, Xu F, Hou H (2021) Current research status of interface of ceramic-metal laminated composite material for armor protection. Jinshu Xuebao/Acta Metallurgica Sinica 57:1107–1125. https://doi.org/10.11900/0412.1961.2021.00051

  23. Kuang W, Wang H, Li X, Zhang J, Zhou Q, Zhao Y (2018) Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-C-X alloys: Modeling and applications. Acta Materialia 159:16–30. https://doi.org/10.1016/j.actamat.2018.08.008

  24. Tian X, Zhao Y, Gu T, Guo Y, Xu F, Hou H (2022) Cooperative effect of strength and ductility processed by thermomechanical treatment for Cu–Al–Ni alloy. Mater Sci Eng A 849:143485. https://doi.org/10.1016/j.msea.2022.143485

  25. Zhao Y, Sun Y, Hou H (2022) Core-shell structure nanoprecipitates in Fe-xCu-3.0Mn-1.5Ni-1.5Al alloys: A phase field study. Progress in Natural Science: Mater Int 32(3):358–368. https://doi.org/10.1016/j.pnsc.2022.04.001

  26. Yang W, Jiang X, Tian X, Hou H, Zhao Y (2023) Phase-field simulation of nano-α′ precipitates under irradiation and dislocations. J Mater Res Technol 22:1307–1321. https://doi.org/10.1016/j.jmrt.2022.11.165

  27. Guo Q, Hou H, Pan Y, Pei X, Song Z, Liaw PK, Zhao Y (2023) Hardening-softening of Al0.3CoCrFeNi high-entropy alloy under nanoindentation. Mater Des 231:112050. https://doi.org/10.1016/j.matdes.2023.112050

  28. Wang J, Pan Z, Wang Y, Wang L, Su L, Cuiuri D, Li H (2020) Evolution of crystallographic orientation, precipitation, phase transformation and mechanical properties realized by enhancing deposition current for dual-wire arc additive manufactured Ni-rich NiTi alloy. Addit Manuf 34:101240. https://doi.org/10.1016/j.addma.2020.101240

  29. Zhao P, Zhu J, Li M, Shao G, Lu H, Wang H, He J (2023) Theoretical and experimental investigations on the phase stability and fabrication of high-entropy monoborides. J Eur Ceram Soc 43(6):2320–2330. https://doi.org/10.1016/j.jeurceramsoc.2023.01.026

  30. Wang K, Zhu J, Wang H, Yang K, Zhu Y, Qing Y, He J (2022) Air plasma-sprayed high-entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 coating with high thermal protection performance. J Adv Ceram 11(10):1571–1582. https://doi.org/10.1007/s40145-022-0630-2

  31. Cooke S, Ahmadi K, Willerth S, Herring R (2020) Metal additive manufacturing: technology, metallurgy and modelling. J Manuf Process 57:978–1003. https://doi.org/10.1016/J.JMAPRO.2020.07.025

    Article  Google Scholar 

  32. Bartlett JL, Li X (2019) An overview of residual stresses in metal powder bed fusion. Addit Manuf 27:131–149. https://doi.org/10.1016/J.ADDMA.2019.02.020

    Article  Google Scholar 

  33. Wang J, Zhu R, Liu Y, Zhang L (2023) Understanding melt pool characteristics in laser powder bed fusion: an overview of single- and multi-track melt pools for process optimization. Adv Powder Mater 2:100137. https://doi.org/10.1016/J.APMATE.2023.100137

    Article  Google Scholar 

  34. Everton S, Dickens P, Tuck C, Dutton B (2018) Using laser ultrasound to detect subsurface defects in metal laser powder bed fusion components. JOM 70:378–383. https://doi.org/10.1007/S11837-017-2661-7/FIGURES/3

    Article  Google Scholar 

  35. Cerniglia D, Scafidi M, Pantano A, Rudlin J (2015) Inspection of additive-manufactured layered components. Ultrasonics 62:292–298. https://doi.org/10.1016/J.ULTRAS.2015.06.001

    Article  Google Scholar 

  36. Brennan MC, Keist JS, Palmer TA et al (2021) Defects in metal additive manufacturing processes. J Mater Eng Perform 30:4808–4818. https://doi.org/10.1007/S11665-021-05919-6

    Article  Google Scholar 

  37. Blecher JJ, Palmer TA, Debroy T (2016) Porosity in Thick Section Alloy 690 Welds – Experiments, Modeling, Mechanism, and Remedy Analyzing the characteristics of laser and hybrid laser‐gas metal arc welded Alloy 690 with a compositionally identical filler metal. Welding J 95:17-s–26-s

  38. Trevisan RE, Schwemmer DD, Olson DL (1990) The Fundamentals of Weld Metal Pore Formation. Mater Process: Theory Pract 8:79–115. https://doi.org/10.1016/B978-0-444-87427-6.50009-5

    Article  Google Scholar 

  39. Everton SK, Hirsch M, Stavroulakis PI et al (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95:431–445. https://doi.org/10.1016/J.MATDES.2016.01.099

    Article  Google Scholar 

  40. Cross CE (2005) On the origin of weld solidification cracking. In: Hot cracking phenomena in welds. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 3–18. https://doi.org/10.1007/3-540-27460-X_1/COVER

    Chapter  Google Scholar 

  41. Lippold JC, Kotecki DJ (2005) Welding Metallurgy and Weldability of Stainless Steels, p 376. Wiley-VCH

  42. Shiva S, Palani IA, Mishra SK et al (2015) Investigations on the influence of composition in the development of Ni–Ti shape memory alloy using laser based additive manufacturing. Opt Laser Technol 69:44–51. https://doi.org/10.1016/J.OPTLASTEC.2014.12.014

    Article  Google Scholar 

  43. Gusarov AV, Pavlov M, Smurov I (2011) Residual stresses at laser surface remelting and additive manufacturing. Phys Procedia 12:248–254. https://doi.org/10.1016/J.PHPRO.2011.03.032

    Article  Google Scholar 

  44. Dinda GP, Song L, Mazumder J (2008) Fabrication of Ti-6Al-4V scaffolds by direct metal deposition. Metall Mater Trans A Phys Metall Mater Sci 39:2914–2922. https://doi.org/10.1007/S11661-008-9634-Y/FIGURES/11

    Article  Google Scholar 

  45. Öztürk N, Yildiz AR, Kaya N, Öztürk F (2006) Neuro-Genetic Design Optimization Framework to Support the Integrated Robust Design Optimization Process in CE. Concurr Eng 14:5–16. https://doi.org/10.1177/1063293X06063314

    Article  Google Scholar 

  46. Gao S, Li H, Huang H, Kang R (2022) Grinding and lapping induced surface integrity of silicon wafers and its effect on chemical mechanical polishing. Appl Surf Sci 599:153982. https://doi.org/10.1016/j.apsusc.2022.153982

  47. Xie B, Li H, Ning Y, Fu M (2023) Discontinuous dynamic recrystallization and nucleation mechanisms associated with 2-, 3- and 4-grain junctions of polycrystalline nickel-based superalloys. Mater Des 231:112041. https://doi.org/10.1016/j.matdes.2023.112041

  48. Zhang H, Xiao Y, Xu Z, Yang M, Zhang L, Yin L, Cai X (2022) Effects of Ni-decorated reduced graphene oxide nanosheets on the microstructural evolution and mechanical properties of Sn-3.0Ag-0.5Cu composite solders. Intermetallics 150:107683. https://doi.org/10.1016/j.intermet.2022.107683

  49. Chen Y, Sun S, Zhang T, Zhou X, Li S (2020) Effects of post-weld heat treatment on the microstructure and mechanical properties of laser-welded NiTi/304SS joint with Ni filler. Mater Sci Eng A 771:138545. https://doi.org/10.1016/j.msea.2019.138545

  50. Yuhua C, Yuqing M, Weiwei L, Peng H (2017) Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints. Opt Laser Technol 91:197–202. https://doi.org/10.1016/j.optlastec.2016.12.028

  51. Guo K, Gou G, Lv H, Shan M (2022) Jointing of CFRP/5083 aluminum alloy by induction brazing: Processing, connecting mechanism, and fatigue performance. Coatings 12(10):1559. https://doi.org/10.3390/coatings12101559

  52. Yildiz AR, Öztürk N, Kaya N, Öztürk F (2003) Integrated optimal topology design and shape optimization using neural networks. Struct Multidiscip Optim 25:251–260. https://doi.org/10.1007/S00158-003-0300-0/METRICS

    Article  Google Scholar 

  53. Fu ZH, Yang BJ, Shan ML, Li T, Zhu ZY, Ma CP, Gao W (2020) Hydrogen embrittlement behavior of SUS301L-MT stainless steel laser-arc hybrid welded joint localized zones. Corros Sci 164:108337. https://doi.org/10.1016/j.corsci.2019.108337

  54. Zhu ZY, Liu YL, Gou GQ, Gao W, Chen J (2021) Effect of heat input on interfacial characterization of the butter joint of hot-rolling CP-Ti/Q235 bimetallic sheets by Laser + CMT. Scientific Reports 11(1):10020. https://doi.org/10.1038/s41598-021-89343-9

  55. Zhu Q, Chen J, Gou G, Chen H, Li P (2017) Ameliorated longitudinal critically refracted—Attenuation velocity method for welding residual stress measurement. J Mater Process Technol 246:267–275. https://doi.org/10.1016/j.jmatprotec.2017.03.022

  56. Liao D, Zhu S, Keshtegar B, Qian G, Wang Q (2020) Probabilistic framework for fatigue life assessment of notched components under size effects. Int J Mech Sci 181:105685. https://doi.org/10.1016/j.ijmecsci.2020.105685

  57. Niu X, Zhu S, He J, Liao D, Correia JAFO, Berto F, Wang Q (2022) Defect tolerant fatigue assessment of AM materials: Size effect and probabilistic prospects. Int J Fatigue 160:106884. https://doi.org/10.1016/j.ijfatigue.2022.106884

  58. Li X, Zhu S, Liao D, Correia JAFO, Berto F, Wang Q (2022) Probabilistic fatigue modelling of metallic materials under notch and size effect using the weakest link theory. Int J Fatigue 159:106788. https://doi.org/10.1016/j.ijfatigue.2022.106788

  59. Meng Z, Qian Q, Xu M et al (2023) PINN-FORM: a new physics-informed neural network for reliability analysis with partial differential equation. Comput Methods Appl Mech Eng 414:116172. https://doi.org/10.1016/J.CMA.2023.116172

    Article  MathSciNet  MATH  Google Scholar 

  60. Aye CM, Pholdee N, Yildiz AR et al (2019) Multi-surrogate-assisted metaheuristics for crashworthiness optimisation. Int J Veh Des 80:223–240. https://doi.org/10.1504/IJVD.2019.109866

    Article  Google Scholar 

  61. Aslan B, Yildiz AR (2020) Optimum design of automobile components using lattice structures for additive manufacturing. Mater Test 62:633–639. https://doi.org/10.3139/120.111527/MACHINEREADABLECITATION/RIS

    Article  Google Scholar 

  62. Günaydln AC, Ylldlz AR, Kaya N (2022) Multi-objective optimization of build orientation considering support structure volume and build time in laser powder bed fusion. Mater Test 64:323–338. https://doi.org/10.1515/MT-2021-2075/MACHINEREADABLECITATION/RIS

    Article  Google Scholar 

  63. Tariq U, Joy R, Wu SH et al (2023) A state-of-the-art digital factory integrating digital twin for laser additive and subtractive manufacturing processes. Rapid Prototyp J. https://doi.org/10.1108/RPJ-03-2023-0113/FULL/XML

  64. Ye D, Hong GS, Zhang Y et al (2018) Defect detection in selective laser melting technology by acoustic signals with deep belief networks. Int J Adv Manuf Technol 96:2791–2801. https://doi.org/10.1007/S00170-018-1728-0/METRICS

    Article  Google Scholar 

  65. Shevchik SA, Kenel C, Leinenbach C, Wasmer K (2018) Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks. Addit Manuf 21:598–604. https://doi.org/10.1016/J.ADDMA.2017.11.012

    Article  Google Scholar 

  66. Zhang Y, Hong GS, Ye D et al (2018) Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring. Mater Des 156:458–469. https://doi.org/10.1016/J.MATDES.2018.07.002

    Article  Google Scholar 

  67. Grasso M, Demir AG, Previtali B, Colosimo BM (2018) In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume. Robot Comput Integr Manuf 49:229–239. https://doi.org/10.1016/J.RCIM.2017.07.001

    Article  Google Scholar 

  68. Scime L, Beuth J (2019) Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process. Addit Manuf 25:151–165. https://doi.org/10.1016/J.ADDMA.2018.11.010

    Article  Google Scholar 

  69. Gobert C, Reutzel EW, Petrich J et al (2018) Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Addit Manuf 21:517–528. https://doi.org/10.1016/J.ADDMA.2018.04.005

    Article  Google Scholar 

  70. Ye D, Hsi Fuh JY, Zhang Y et al (2018) In situ monitoring of selective laser melting using plume and spatter signatures by deep belief networks. ISA Trans 81:96–104. https://doi.org/10.1016/J.ISATRA.2018.07.021

    Article  Google Scholar 

  71. Kwon O, Kim HG, Ham MJ et al (2020) A deep neural network for classification of melt-pool images in metal additive manufacturing. J Intell Manuf 31:375–386. https://doi.org/10.1007/S10845-018-1451-6/FIGURES/9

    Article  Google Scholar 

  72. Okaro IA, Jayasinghe S, Sutcliffe C et al (2018) Automatic Fault Detection for Selective Laser Melting Using Semi-Supervised Machine Learning. https://doi.org/10.20944/PREPRINTS201809.0346.V1

  73. Okaro IA, Jayasinghe S, Sutcliffe C et al (2019) Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning. Addit Manuf 27:42–53. https://doi.org/10.1016/J.ADDMA.2019.01.006

    Article  Google Scholar 

  74. Grasso M, Laguzza V, Semeraro Q, Colosimo BM (2017) In-process monitoring of selective laser melting: spatial detection of defects via image data analysis. J Manuf Sci Eng Trans ASME 139:051001. https://doi.org/10.1115/1.4034715/377587

    Article  Google Scholar 

  75. Zur Jacobsmuhlen J, Kleszczynski S, Witt G, Merhof D (2015) Detection of elevated regions in surface images from laser beam melting processes. In: IECON 2015 - 41st Annu Conf IEEE Ind Electron Soc, pp 1270–1275. https://doi.org/10.1109/IECON.2015.7392275

    Chapter  Google Scholar 

  76. Caggiano A, Zhang J, Alfieri V et al (2019) Machine learning-based image processing for on-line defect recognition in additive manufacturing. CIRP Ann 68:451–454. https://doi.org/10.1016/J.CIRP.2019.03.021

    Article  Google Scholar 

  77. Jafari-Marandi R, Khanzadeh M, Tian W et al (2019) From in-situ monitoring toward high-throughput process control: cost-driven decision-making framework for laser-based additive manufacturing. J Manuf Syst 51:29–41. https://doi.org/10.1016/J.JMSY.2019.02.005

    Article  Google Scholar 

  78. Khanzadeh M, Chowdhury S, Tschopp MA et al (2018) In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes. IISE Transactions 51(5):437–455. https://doi.org/10.1080/24725854.2017.1417656

    Article  Google Scholar 

  79. Mahmood MA, Visan AI, Ristoscu C, Mihailescu IN (2021) Artificial Neural Network Algorithms for 3D Printing. Materials 14(1):163

    Article  Google Scholar 

  80. Zhao L, Yue H, Guo C et al (2020) Analytical modelling and experimental study of the cladding characteristics of a laser powder-fed additive manufacturing process. Int J Adv Manuf Technol 109:2891–2900. https://doi.org/10.1007/s00170-020-05813-w

    Article  Google Scholar 

  81. Zhang Z, Huang Y, Rani Kasinathan A et al (2019) 3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity. Opt Laser Technol 109:297–312. https://doi.org/10.1016/J.OPTLASTEC.2018.08.012

    Article  Google Scholar 

  82. Johnson L, Mahmoudi M, Zhang B et al (2019) Assessing printability maps in additive manufacturing of metal alloys. Acta Mater 176:199–210. https://doi.org/10.1016/j.actamat.2019.07.005

    Article  Google Scholar 

  83. He P, Sun C, Wang Y (2021) Material distortion in laser-based additive manufacturing of fuel cell component: three-dimensional numerical analysis. Addit Manuf 46:102188. https://doi.org/10.1016/j.addma.2021.102188

    Article  Google Scholar 

  84. Ahn DG, Byun KW, Kang MC (2010) Thermal characteristics in the cutting of Inconel 718 superalloy using CW Nd:YAG laser. J Mater Sci Technol 26:362–366. https://doi.org/10.1016/S1005-0302(10)60059-X

    Article  Google Scholar 

  85. García Navas V, Arriola I, Gonzalo O, Leunda J (2013) Mechanisms involved in the improvement of Inconel 718 machinability by laser assisted machining (LAM). Int J Mach Tools Manuf 74:19–28. https://doi.org/10.1016/J.IJMACHTOOLS.2013.06.009

    Article  Google Scholar 

  86. Ziebland H, Burton JTA (1958) The thermal conductivity of nitrogen and argon in the liquid and gaseous states. Br J Appl Phys 9:52. https://doi.org/10.1088/0508-3443/9/2/302

    Article  Google Scholar 

  87. Aggarangsi P, Beuth JL (2006) Localized Preheating Approaches for Reducing Residual Stress in Additive Manufacturing. In: International Solid Freeform Fabrication Symposium, Austin Texas, pp 709–720

  88. Heigel JC, Michaleris P, Reutzel EW (2015) Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V. Addit Manuf 5:9–19. https://doi.org/10.1016/J.ADDMA.2014.10.003

    Article  Google Scholar 

  89. Pottlacher G, Hosaeus H, Kaschnitz E, Seifter A (2002) Thermophysical properties of solid and liquid Inconel 718 alloy. Scand J Metall 31:161–168. https://doi.org/10.1034/j.1600-0692.2002.310301.x

    Article  Google Scholar 

  90. Le TN, Lo YL, Lin ZH (2020) Numerical simulation and experimental validation of melting and solidification process in selective laser melting of IN718 alloy. Addit Manuf 36:101519. https://doi.org/10.1016/j.addma.2020.101519

    Article  Google Scholar 

  91. Tongtai Tongtai-AM250. https://www.tongtai.com.tw/en/product-detail.php?id=314

  92. Sood AK, Ohdar RK, Mahapatra SS (2012) Experimental investigation and empirical modelling of FDM process for compressive strength improvement. J Adv Res 3:81–90. https://doi.org/10.1016/j.jare.2011.05.001

    Article  Google Scholar 

  93. Sood AK, Equbal A, Toppo V et al (2012) An investigation on sliding wear of FDM built parts. CIRP J Manuf Sci Technol 5:48–54. https://doi.org/10.1016/j.cirpj.2011.08.003

    Article  Google Scholar 

  94. Mukherjee T, Zuback JS, De A, DebRoy T (2016) Printability of alloys for additive manufacturing. Sci Rep 6:1–8. https://doi.org/10.1038/srep19717

    Article  Google Scholar 

  95. Carroll BE, Palmer TA, Beese AM (2015) Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater 87:309–320. https://doi.org/10.1016/J.ACTAMAT.2014.12.054

    Article  Google Scholar 

  96. King WE, Barth HD, Castillo VM et al (2014) Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol 214:2915–2925. https://doi.org/10.1016/j.jmatprotec.2014.06.005

    Article  Google Scholar 

  97. Roehling JD, Perron A, Fattebert JL et al (2018) Rapid solidification in bulk Ti-Nb alloys by single-track laser melting. JOM 70:1589–1597. https://doi.org/10.1007/S11837-018-2920-2/FIGURES/4

    Article  Google Scholar 

  98. Seede R, Shoukr D, Zhang B et al (2020) An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: densification, microstructure, and mechanical properties. Acta Mater 186:199–214. https://doi.org/10.1016/j.actamat.2019.12.037

    Article  Google Scholar 

  99. Kamath C, El-Dasher B, Gallegos GF, King WE, Sisto A (2014) Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. Int J Adv Manuf Technol 74:65–78. https://doi.org/10.1007/S00170-014-5954-9

    Article  Google Scholar 

  100. Zheng T, Pan S, Murali N et al (2022) Selective laser melting of novel 7075 aluminum powders with internally dispersed TiC nanoparticles. Mater Lett 319:132268. https://doi.org/10.1016/J.MATLET.2022.132268

    Article  Google Scholar 

  101. Pan SH, Yao GC, Cui YN et al (2022) Additive manufacturing of tungsten, tungsten-based alloys, and tungsten matrix composites. Tungsten 5:1–31. https://doi.org/10.1007/S42864-022-00153-6

    Article  Google Scholar 

  102. Wang S, Ning J, Zhu L et al (2022) Role of porosity defects in metal 3D printing: formation mechanisms, impacts on properties and mitigation strategies. Mater Today 59:133–160. https://doi.org/10.1016/J.MATTOD.2022.08.014

    Article  Google Scholar 

  103. Lack of fusion. BOConline UK

  104. Rehman AU, Pitir F, Salamci MU (2021) Laser powder bed fusion (LPBF) of In718 and the impact of pre-heating at 500 and 1000 °C: Operando Study. Mater 14:6683. https://doi.org/10.3390/MA14216683

    Article  Google Scholar 

  105. Chen Q, Zhao Y, Strayer S et al (2021) Elucidating the effect of preheating temperature on melt pool morphology variation in Inconel 718 laser powder bed fusion via simulation and experiment. Addit Manuf 37:101642. https://doi.org/10.1016/J.ADDMA.2020.101642

    Article  Google Scholar 

  106. Tan P, Kiran R, Zhou K (2021) Effects of sub-atmospheric pressure on keyhole dynamics and porosity in products fabricated by selective laser melting. J Manuf Process 64:816–827. https://doi.org/10.1016/J.JMAPRO.2021.01.058

    Article  Google Scholar 

  107. Yuan W, Chen H, Li S et al (2022) Understanding of adopting flat-top laser in laser powder bed fusion processed Inconel 718 alloy: simulation of single-track scanning and experiment. J Mater Res Technol 16:1388–1401. https://doi.org/10.1016/j.jmrt.2021.12.077

    Article  Google Scholar 

  108. Wang HY, Lo YL, Tran HC et al (2021) Systematic approach for reducing micro-crack formation in Inconel 713LC components fabricated by laser powder bed fusion. Rapid Prototyp J 27:1548–1561. https://doi.org/10.1108/RPJ-11-2020-0282/FULL/XML

    Article  Google Scholar 

  109. Sokoluk M, Yuan J, Pan S, Li X (2021) Nanoparticles enabled mechanism for hot cracking elimination in aluminum alloys. Metall Mater Trans A Phys Metall Mater Sci 52:3083–3096. https://doi.org/10.1007/S11661-021-06302-9/FIGURES/12

    Article  Google Scholar 

  110. Sokoluk M, Cao C, Pan S, Li X (2019) Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075. Nat Commun 10:98. https://doi.org/10.1038/s41467-018-07989-y

    Article  Google Scholar 

  111. Martin JH, Yahata BD, Hundley JM et al (2017) 3D printing of high-strength aluminium alloys. Nat 549:365–369. https://doi.org/10.1038/nature23894

    Article  Google Scholar 

  112. Pardi T, Krzywdzinski M, Luethje B (2020) Digital manufacturing revolutions as political projects and hypes: Evidences from the auto sector, ILO Working Paper 3 (Geneva, ILO)

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, visualization, software, investigation and validation, writing—original draft preparation, and writing—review and editing: M.A.M. and U.T.; resources and supervision and project administration and funding acquisition by M.A.M. All authors have read and agreed to the published version of the article.

Corresponding author

Correspondence to Muhammad Arif Mahmood.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, M., Tariq, U. A novel framework using FEM and machine learning models with experimental verification for Inconel-718 rapid part qualification by laser powder bed fusion. Int J Adv Manuf Technol 129, 1567–1584 (2023). https://doi.org/10.1007/s00170-023-12383-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12383-0

Keywords

Navigation