Skip to main content

Advertisement

Log in

Scheduling multi-objective job shops using a memetic algorithm based on differential evolution

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, a memetic algorithm based on differential evolution (DE), named MODEMA, is proposed for multi-objective job shop scheduling problems (MJSSPs). To balance the exploration and exploitation abilities, both DE-based global search and an adaptive local search are designed and applied simultaneously in the proposed MODEMA. Firstly, a smallest-order-value (SOV) rule is presented to convert the continuous values of individuals (real vectors) in DE to job permutations. Secondly, after the exploration based on DE, several neighborhoods are used in a local search and an adaptive Meta-Lamarckian strategy is employed to dynamically decide which neighborhood should be selected to stress exploitation in each generation. In addition, a solution set is used in MODEMA to hold and update the obtained nondominated solutions. Simulation results and comparisons with Ishibuchi and Murata’s multi-objective genetic local search (IMMOGLS) show the effectiveness and robustness of the proposed MODEMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang L (2003) Shop scheduling with genetic algorithms. Tsinghua University & Springer Press, Beijing

    Google Scholar 

  2. Brucker P, Jurisch B, Sievers B (1994) A branch and bound algorithm for job-shop scheduling problem. Discrete Appl Math 49:105–127

    Article  MathSciNet  Google Scholar 

  3. Carlier J, Pinson E (1989) An algorithm for solving the job shop problem. Manage Sci 35(29):164–176

    MathSciNet  MATH  Google Scholar 

  4. Carlier J, Pinson E (1990) A practical use of Jackson’s preemptive schedule for solving the job-shop problem. Ann Oper Res 26:269–287

    MathSciNet  MATH  Google Scholar 

  5. Haupt R (1989) A survey of priority-rule based scheduling. OR Spektrum 11:3–16

    Article  MathSciNet  MATH  Google Scholar 

  6. Laarhoven PJMV, Aarts EHL, Lenstra JK (1992) Job shop scheduling by simulated annealing. Oper Res 40:113–125

    MathSciNet  MATH  Google Scholar 

  7. Dell AM, Trubian M (1993) Applying tabu search to the job shop scheduling problem. Ann Oper Res 40:231–252

    Article  Google Scholar 

  8. Nowicki E, Smutnicki C (1996) A fast taboo search algorithm for the job-shop problem. Manage Sci 42(6):797–813

    MATH  Google Scholar 

  9. Croce F, Tadei R, Volta G (1995) A genetic algorithm for the job shop problem. Comput Oper Res 22(1):15–24

    Article  MATH  Google Scholar 

  10. Jia HZ, Nee AYC, Fuh JYH, Zhang YF (2003) A modified genetic algorithm for distributed scheduling problems. J Intell Manuf 14:351–362

    Article  Google Scholar 

  11. Coello CAC (1999) A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl Inform Syst 1(3):269–308

    Google Scholar 

  12. Coello CAC, Veldhuizen DAV, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer, Boston, MA

    MATH  Google Scholar 

  13. Lei D, Wu ZM (2006) Crowding-measure-based multiobjective evolutionary algorithm for job shop scheduling. Int J Adv Manuf Tech 30(1-2):112–117

    Google Scholar 

  14. Ponnambalam SG, Ramkumar V, Jawahar N (2001) A multiobjective genetic algorithm for job shop scheduling. Prod Plan Control 12(8):764–774

    Article  Google Scholar 

  15. Giffler B, Thompson GL (1960) Algorithms for solving production scheduling problems. Oper Res 8:487–503

    MathSciNet  MATH  Google Scholar 

  16. Esuqivel S, Ferrero S, Gallard R, Salto C, Alfonso H, Schotz M (2002) Enhanced evolutionary algorithms for single and multiobjective optimization in the job shop scheduling problem. Knowl-Based Syst 15:13–25

    Article  Google Scholar 

  17. Mesghouni K, Pesin P, Trentesaux D, Hammadi S, Tahon C, Borne P (1999) Hybrid approach to decision-making for job shop scheduling. Prod Plan Control 10(7):690–706

    Article  Google Scholar 

  18. Reeves CR, Yamada T (1998) Genetic algorithms, path relinking and the flowshop sequencing problem. Evol Comput 6:45–60

    Google Scholar 

  19. Murata T, Ishibuchi H, Tanaka H (1996) Genetic algorithms for flowshop scheduling problems. Comput Ind Eng 30:1061–1071

    Article  Google Scholar 

  20. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: toward memetic algorithms. C3P Report 826, Caltech Concurrent Computation Program, California Institute of Technology, Pasadena, CA

    Google Scholar 

  21. Hart WE, Krasnogor N, Smith JE (2004) Recent advances in memetic algorithms. Springer, Heidelberg New York

    Google Scholar 

  22. Merz P (2000) Memetic algorithms for combinatorial optimization problems: fitness landscapes and effective search strategies. PhD dissertation, University of Siegen, Germany

  23. Merz P, Freisleben B (2000) Fitness landscapes, memetic algorithms and greedy operators for graph bipartitioning. Evol Comput 8:61–91

    Article  Google Scholar 

  24. Burke EK, Smith AJ (2000) Hybrid evolutionary techniques for the maintenance scheduling problem. IEEE T Power Syst 15:122–128

    Article  Google Scholar 

  25. Cheng RW, Gen M (1997) Parallel machine scheduling problems using memetic algorithms. Comput Ind Eng 33:761–764

    Article  Google Scholar 

  26. Ong YS, Keane AJ (2004) Meta-Lamarckian learning in memetic algorithms. IEEE T Evol Comput 8:99–110

    Article  Google Scholar 

  27. Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE T Evol Comput 7:204–223

    Article  Google Scholar 

  28. Wang L, Zheng D (2001) An effective hybrid optimisation strategy for job-shop scheduling problems. Comput Oper Res 28:585–596

    Article  MathSciNet  MATH  Google Scholar 

  29. Gonçalves JF, Mendes JJM, Resende MGC (2005) A hybrid genetic algorithm for the job shop scheduling problem. Eur J Oper Res 167(1):77–95

    Article  MATH  Google Scholar 

  30. Xia WJ, Wu ZM (2005) An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Comput Ind Eng 48:409–425

    Article  Google Scholar 

  31. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 2:341–359

    Article  MathSciNet  Google Scholar 

  32. Ilonen J, Kamarainen JK, Lampinen J (2003) Differential evolution training algorithm for feed-forward neural networks. Neural Process Lett 17(1):93–105

    Article  Google Scholar 

  33. Chang FP, Hwang C (2004) Design of digital PID controllers for continuous-time plants with integral performance criteria. J Chin Inst Chem Eng 35(6):683–696

    Google Scholar 

  34. Chang YP, Wu CJ (2005) Optimal multiobjective planning of large-scale passive harmonic filters using hybrid differential evolution method considering parameter and loading uncertainty. IEEE T Power Deliver 20(1):408–416

    Article  Google Scholar 

  35. Ali MM, Torn A (2004) Population set-based global optimization algorithms: some modifications and numerical studies. Comput Oper Res 31(10):1703–1725

    Article  MathSciNet  MATH  Google Scholar 

  36. Onwubolu G, Davendra D (2006) Scheduling flow shops using differential evolution algorithm. Eur J Oper Res (in press)

  37. Ishibuchi H, Murata T (1998) A multiobjective genetic local search algorithm and its application to flowshop scheduling. IEEE T Syst Man Cy C 28(3):392–403

    Article  Google Scholar 

  38. Jaszkiewicz A (2002) Genetic local search for multi-objective combinatorial optimization. Eur J Oper Res 137(1):50–71

    Article  MathSciNet  MATH  Google Scholar 

  39. Knowles JD, Corne DW (2000) M-PAES: a memetic algorithm for multiobjective optimization. In: Proceedings of the IEEE conference on evolutionary computation, ICEC 1:325–332

    Google Scholar 

  40. Knowles JD, Corne DW (2000) Approximating the nondominated front using the Pareto archive evolutionary strategy. Evol Comput 8(2):149–172

    Article  Google Scholar 

  41. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE T Evol Comput 1:67–82

    Article  Google Scholar 

  42. Nowicki E, Smutnicki C (2001) Some new ideas in TS for job-shop scheduling. Technical report 50/2001, Institute of Engineering Cybernetics. Wroclaw University of Technology, Wroclaw, Poland

    Google Scholar 

  43. Bierwirth C, Mattfeld DC, Watson JP (2004) Landscape regularity and random walks for the job-shop scheduling problem. Lect Notes Comput Sc 3004:21–30

    Article  Google Scholar 

  44. Pinedo M (2002) Scheduling theory, algorithms, and systems. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  45. Silva JDL, Burke EK, Petrovic S (2004) An introduction to multiobjective metaheuristics for scheduling and timetabling. Lect Notes Econ Math Syst 535:91–129

    MathSciNet  Google Scholar 

  46. Price K, Storn R (2006) Differential evolution (DE)for continuous function optimization.http://www.icsi.berkeley.edu/%7Estorn/code.html. Accessed 28 September 2006

  47. Bean JC (1994) Genetic algorithm and random keys for sequencing and optimization. ORSA J Comput 6(2):154–160

    MATH  Google Scholar 

  48. Ong YS (2002) Artificial intelligence technologies in complex engineering design. PhD dissertation, University of Southampton, UK

  49. Holland J (1992) Adaptation in natural and artificial systems. MIT Press, Cambridge, MA

    Google Scholar 

  50. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. IEEE T Evol Comput 8(2):173–195

    Article  Google Scholar 

  51. Muth JF, Thompson GL (1963) Industrial scheduling. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  52. Lawrence S (1984) Resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques. Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh

    Google Scholar 

  53. Adams J, Balas E, Zawack D (1988) The shifting bottleneck procedure for job shop scheduling. Manage Sci 34:391–401

    Article  MathSciNet  MATH  Google Scholar 

  54. Jain AS, Meeran S (1999) Deterministic job-shop scheduling: past, present and future. Eur J Oper Res 113:390–434

    Article  MATH  Google Scholar 

  55. Dorndorf U, Pesch E (1995) Evolution based learning in a job shop scheduling environment. Comput Oper Res 22:25–40

    Article  MATH  Google Scholar 

  56. Nowicki E, Smutnicki C (1996) A fast tabu search algorithm for the permutation flow-shop problem. Eur J Oper Res 91:160–175

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, B., Wang, L., Huang, DX. et al. Scheduling multi-objective job shops using a memetic algorithm based on differential evolution. Int J Adv Manuf Technol 35, 1014–1027 (2008). https://doi.org/10.1007/s00170-006-0787-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-006-0787-9

Keywords

Navigation