Skip to main content

Advertisement

Log in

A density-based topology optimization methodology for thermoelectric energy conversion problems

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A density-based topology optimization approach for thermoelectric (TE) energy conversion problems is proposed. The approach concerns the optimization of thermoelectric generators (TEGs) and thermoelectric coolers (TECs). The framework supports convective heat transfer boundary conditions, temperature dependent material parameters and relevant objective functions. Comprehensive implementation details of the methodology are provided, and seven different design problems are solved and discussed to demonstrate that the approach is well-suited for optimizing TEGs and TECs. The study reveals new insight in TE energy conversion, and the study provides guidance for future research, which pursuits the development of high performing and industrially profitable TEGs and TECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Angst S (2016) Complex dynamics and performance of inhomogeneous thermoelectrics. PhD thesis, Von der Fakultt fr Physik der Universitt Duisburg-Essen

  • Antonova E E, Looman D C (2000) Finite elements for thermoelectric device analysis in ANSYS. In: International conference on thermoelectrics, pp 1–4

  • Bendsøe M, Sigmund O (2003) Topology optimization - theory methods and applications. Springer, Berlin

    MATH  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Champier D (2017) Thermoelectric generators: a review of present and future applications. Springer International Publishing, Cham, pp 203–212

    Google Scholar 

  • Cook R D, Malkus D S, Plesha M E, Witt R J (2007) Concepts and applications of finite element analysis, 4th edn. Wiley, New York

    Google Scholar 

  • Deuflhard P (2014) Newton methods for nonlinear problems. Springer, Berlin

    MATH  Google Scholar 

  • Goldsmid H J (2009) Introduction to thermoelectricity, vol 121. Springer Science & Business Media, Berlin

    Google Scholar 

  • Heghmanns A, Beitelschmidt M (2015) Parameter optimization of thermoelectric modules using a genetic algorithm. Appl Energy 155:447–454

    Article  Google Scholar 

  • Rowe D M (2005) Thermoelectrics handbook: macro to nano. CRC Press, Boca Raton

    Book  Google Scholar 

  • Sakai A, Kanno T, Takahashi K, Tamaki H, Kusada H, Yamada Y, Abe H (2014) Breaking the trade-off between thermal and electrical conductivities in the thermoelectric material of an artificially tilted multilayer. Sci Rep 4:6089

    Article  Google Scholar 

  • Sigmund O (1998) Systematic design of electrothermomechanical microactuators using topology optimization. In: Modelling and simulation of microsystems, semiconductors, sensors and actuators, pp 1492–1500

  • Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mechanica Sinica/Lixue Xuebao 25 (2):227–239

    Article  MATH  Google Scholar 

  • Sigmund O (2011) On the usefulness of non-gradient approaches in topology optimization. Struct Multidiscip Optim 43(5):589–596

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Takezawa A, Kitamura M (2012) Geometrical design of thermoelectric generators based ontopology optimization. Int J Numer Methods Eng 90:1885–1891

    Article  MATH  Google Scholar 

  • Tian Z, Lee S, Chen G (2014) A comprehensive review of heat transfer in thermoelectric materials and devices. Ann Rev Heat Transfer 17:425–483

    Article  Google Scholar 

  • Tritt T M, Ma Subramanian (2006) Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull 31(March):188–198

    Article  Google Scholar 

  • Ursell T S, Snyder G J (2002) Compatibility of segmented thermoelectric generators. In: Twenty-first international conference on thermoelectrics, 2002. Proceedings ICT’02. IEEE, pp 412–417

  • Vining C B (2009) An inconvenient truth about thermoelectrics. Nat Mater 8(2):83–85

    Article  Google Scholar 

  • Wang F, Lazarov B S, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    Article  MATH  Google Scholar 

  • Yamashita O, Tomiyoshi S, Makita K (2003) Bismuth telluride compounds with high thermoelectric figures of merit. J Appl Phys 93(1):368–374

    Article  Google Scholar 

  • Yang Y, Xie S H, Ma F, Lei C H (2012) On the effective thermoelectric properties of layered heterogeneous medium. J Appl Phys 111(1):3510

    Google Scholar 

  • Yang Y, Ma F, Lei C H, YY L, Li J (2013) Is thermoelectric conversion efficiency of a composite bounded by its constituents? Appl Phys Lett 102(5):53905

    Article  Google Scholar 

  • Yushanov S, Gritter L, Crompton J, Koppenhoefer K (2011) Multiphysics analysis of thermoelectric phenomena. In: Seventh annual conference on multiphysics modeling and simulation, proceedings of the 2011 COMSOL conference, Boston, USA

Download references

Acknowledgements

The authors acknowledge the financial support received from the TopTen project sponsored by the Danish Council for Independent Research (DFF-4005-00320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lundgaard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lundgaard, C., Sigmund, O. A density-based topology optimization methodology for thermoelectric energy conversion problems. Struct Multidisc Optim 57, 1427–1442 (2018). https://doi.org/10.1007/s00158-018-1919-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-1919-1

Keywords

Navigation