Skip to main content
Log in

Genome-wide association study of phosphorus-deficiency-tolerance traits in Aegilops tauschii

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Using GWAS, 13 significant SNPs distributed on six of the seven Aegilops tauschii chromosomes (all but 5D) were identified, and several candidate P-deficiency-responsive genes were proposed from searches of public databases.

Abstract

Aegilops tauschii, the wheat (Triticum aestivum) D-genome progenitor, possesses numerous genes for stress resistance, including genes for tolerance of phosphorus (P) deficiency. Investigation of the genetic architecture of A. tauschii will help in developing P-deficiency-tolerant varieties of wheat. We evaluated nine traits in a population of 380 A. tauschii specimens under conditions with and without P application, and we performed genome-wide association studies for these traits using single nucleotide polymorphism (SNP) chips containing 7185 markers. Using a general linear model, we identified 119 SNPs that were significantly associated with all nine traits, and a mixed linear model revealed 18 SNPs associated with all traits. Both models detected 13 significant markers distributed on six of the seven A. tauschii chromosomes (all but 5D). Searches of public databases revealed several candidate/flanking genes related to P-deficiency tolerance. These genes were grouped in five categories by the types of proteins they encoded: defense response proteins, enzymes, promoters and transcription factors, storage proteins, or proteins triggered by P deficiency. The identified SNPs and genes contain essential information for cloning genes related to P-deficiency tolerance in A. tauschii and wheat, and they provide a foundation for breeding P-deficiency tolerant wheat cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AM:

Association mapping

AP:

Applied phosphorus

BLAST:

Basic local alignment search tool

CV:

Coefficient of variation

DH:

Double haploid

DNA:

Deoxyribose nucleic acid

GLM:

General linear model

GWAS:

Genome wide association study

IWGSC:

International Wheat Genome Sequencing Consortium

LD:

Linkage disequilibrium

MAF:

Minor allele frequency

MCMC:

Markov Chain Monte Carlo

MLM:

Mixed linear model

MTAs:

Marker trait associations

NAP:

No-applied phosphorus

NCBI:

National Center for Biotechnology Information

P:

Phosphorus

PDTI:

Phosphorus deficiency tolerance index

PTs:

Phosphate transporters

QTL:

Quantitative trait loci R/S, root to shoot ratio

RDM:

Root diameter

RDW:

Root dry weight

RF:

Root forks

RIL:

Recombinant inbred line

RL:

Root length

RSA:

Root surface area

RT:

Root tips

SDW:

Shoot dry weight

SNP:

Single nucleotide polymorphism

TDW:

Total dry weight

References

  • Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ (2009) Two rice phosphate transporters, OsPht1; 2 and OsPht1; 6, have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809

    Article  CAS  PubMed  Google Scholar 

  • Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bordes J, Ravel C, Le Gouis J, Lapierre A, Charmet G, Balfourier F (2011) Use of a global wheat core collection for association analysis of flour and dough quality traits. J Cereal Sci 54:137–147

    Article  Google Scholar 

  • Bordes J, Ravel C, Jaubertie J, Duperrier B, Gardet O, Heumez E, Pissavy A, Charmet G, Le Gouis J, Balfourier F (2013) Genomic regions associated with the nitrogen limitation response revealed in a global wheat core collection. Theor Appl Genet 126:805–822

    Article  CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed Central  PubMed  Google Scholar 

  • Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557–567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cantu D, Yang B, Ruan R, Li K, Menzo V, Fu D, Chern M, Ronald PC, Dubcovsky J (2013) Comparative analysis of protein-protein interactions in the defense response of rice and wheat. BMC Genom 14:166

    Article  CAS  Google Scholar 

  • Cao W, Jia J, Jin J (2001) Identification and interaction analysis of QTL for phosphorus use efficiency in wheat. Plant Nutr Fertil Sci 7:285–292

    Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dai XQ, Zhang HY, Spiertz J, Yu J, Xie GH, Bouman B (2010) Crop response of aerobic rice and winter wheat to nitrogen, phosphorus and potassium in a double cropping system. Nutr Cycl Agroecosys 86:301–315

    Article  CAS  Google Scholar 

  • Ehrenreich IM, Hanzawa Y, Chou L, Roe JL, Kover PX, Purugganan MD (2009) Candidate gene association mapping of Arabidopsis flowering time. Genetics 183:325–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fageria N, Baligar V, Li Y (2008) The role of nutrient efficient plants in improving crop yields in the twenty first century. J Plant Nutr 31:1121–1157

    Article  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farooq S (2009) Triticeae: the ultimate source of abiotic stress tolerance improvement in wheat. Salinity and Water Stress. Springer, Netherlands, pp 65–71

    Google Scholar 

  • Flint-Garcia SA, Thornsberry JMB IV (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–539

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Zhao X, Liu X, Zhang L, Gu J, Li X, Lu W, Xiao K (2013) Function of wheat phosphate transporter gene TaPHT2; 1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions. Planta 237:1163–1178

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Guo L, Li X, Gu J, Zhao M, Duan W, Ma C, Lu W, Xiao K (2014) TaPT2, a high-affinity phosphate transporter gene in wheat (Triticum aestivum L.), is crucial in plant Pi uptake under phosphorus deprivation. Acta Physiol Plant 36:1373–1384

    Article  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485

    Article  CAS  PubMed  Google Scholar 

  • Hästbacka J, de la Chapelle A, Kaitila I, Sistonen P, Weaver A, Lander E (1992) Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nat Genet 2:204–211

    Article  PubMed  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular California Agricultural Experiment Station 347

  • Holford I (1997) Soil phosphorus: its measurement, and its uptake by plants. Aust J Soil Res 35:227–240

    Article  CAS  Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265:2037–2048

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Ni Z, Peng H, Liu Z, Nie X, Xu S, Liu G, Sun Q (2007) Molecular mapping of QTLs for root response to phosphorus deficiency at seedling stage in wheat (Triticum aestivum L.). Prog Nat Sci 10:1177–1184

    Google Scholar 

  • Li A, Wang X, Leseberg CH, Jia J, Mao L (2008) Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat (Triticum aestivum L.). Plant Signal Behav 3:654–656

    Article  PubMed Central  PubMed  Google Scholar 

  • Li Y-H, Zhang C, Gao Z-S, Smulders MJM, Ma Z, Liu Z-X, Nan H-Y, Chang R-Z, Qiu L-J (2009) Development of SNP markers and haplotype analysis of the candidate gene for rhg1, which confers resistance to soybean cyst nematode in soybean. Mol Breeding 24:63–76

    Article  Google Scholar 

  • Liu X, Zhao X, Zhang L, Lu W, Li X, Xiao K (2013) TaPht1; 4, a high-affinity phosphate transporter gene in wheat (Triticum aestivum), plays an important role in plant phosphate acquisition under phosphorus deprivation. Funct Plant Biol 40:329–341

    Article  CAS  Google Scholar 

  • Luo MC, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci USA 110:7940–7945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lynch JP (2007) Turner review no. 14. Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Functions of mineral nutrients: macronutrients. Mineral Nutr Higher Plants 2:379–396

    Google Scholar 

  • Massman J, Cooper B, Horsley R, Neate S, Dill-Macky R, Chao S, Dong Y, Schwarz P, Muehlbauer G, Smith K (2011) Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breeding 27:439–454

    Article  Google Scholar 

  • Misson J, Thibaud M-C, Bechtold N, Raghothama K, Nussaume L (2004) Transcriptional regulation and functional properties of Arabidopsis Pht1; 4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Mol Biol 55:727–741

    Article  CAS  PubMed  Google Scholar 

  • Mujeeb-Kazi A, Rosas V, Roldan S (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s. lat. x T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Ev 43:129–134

    Article  Google Scholar 

  • Navakode S, Neumann K, Kobiljski B, Lohwasser U, Börner A (2014) Genome wide association mapping to identify aluminium tolerance loci in bread wheat. Euphytica 198:401–411

    Article  CAS  Google Scholar 

  • Neumann K, Kobiljski B, Denčić S, Varshney R, Börner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breeding 27:37–58

    Article  Google Scholar 

  • Padulosi S, Hammer K, Heller J (1996) Hulled Wheats: Proceedings of the First International Workshop on Hulled Wheats, Castelvecchio Pascoli, Tuscany, Italy. Bioversity International

  • Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A (2012) Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol 12:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ravel C, Martre P, Romeuf I, Dardevet M, El-Malki R, Bordes J, Duchateau N, Brunel D, Balfourier F, Charmet G (2009) Nucleotide polymorphism in the wheat transcriptional activator Spa influences its pattern of expression and has pleiotropic effects on grain protein composition, dough viscoelasticity, and grain hardness. Plant Physiol 151:2133–2144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schneider A, Molnár I, Molnár-Láng M (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19

    Article  CAS  Google Scholar 

  • Singh A, Reimer S, Pozniak C, Clarke F, Clarke J, Knox R, Singh A (2009) Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain. Theor Appl Genet 118:1539–1548

    Article  CAS  PubMed  Google Scholar 

  • Smith S, Kuehl R, Ray I, Hui R, Soleri D (1998) Evaluation of simple methods for estimating broad-sense heritability in stands of randomly planted genotypes. Crop Sci 38:1125–1129

    Article  Google Scholar 

  • Stracke S, Haseneyer G, Veyrieras J-B, Geiger HH, Sauer S, Graner A, Piepho H-P (2009) Association mapping reveals gene action and interactions in the determination of flowering time in barley. Theor Appl Genet 118:259–273

    Article  CAS  PubMed  Google Scholar 

  • Su J, Xiao Y, Li M, Liu Q, Li B, Tong Y, Jia J, Li Z (2006) Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Plant Soil 281:25–36

    Article  CAS  Google Scholar 

  • Su J-Y, Zheng Q, Li H-W, Li B, Jing R-L, Tong Y-P, Li Z-S (2009) Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci 176:824–836

    Article  CAS  Google Scholar 

  • Tang Z, Sadka A, Morishige DT, Mullet JE (2001) Homeodomain leucine zipper proteins bind to the phosphate response domain of the soybean VspB tripartite promoter. Plant Physiol 125:797–809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 98:9161–9166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  CAS  PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Wang J, Luo MC, Chen Z, You FM, Wei Y, Zheng Y, Dvorak J (2013) Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol 198:925–937

    Article  CAS  PubMed  Google Scholar 

  • Wissuwa M, Ae N (2001) Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement. Plant Breeding 120:43–48

    Article  CAS  Google Scholar 

  • Wissuwa M, Yano M, Ae N (1998) Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:777–783

    Article  CAS  Google Scholar 

  • Yang M, Ding G, Shi L, Feng J, Xu F, Meng J (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121:181–193

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F, Wen W, Liu J, Li J, Yan J (2014) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet 10:e1004573

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Cao F, Fang S, Wang G, Zhang H, Cao Z (2005) Effects of agricultural production on phosphorus losses from paddy soils: a case study in the Taihu Lake Region of China. Wetl Ecol Manag 13:25–33

    Article  CAS  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Assad Siham (ICARDA, Syria), Jon W. Raupp (Kansas State University, USA), Shuhei Nasuda (Komugi, Japan) and Harold Bockelman (USDA, USA) for plant materials. This work was supported by the International Science and Technology Cooperation Program of China (No. 2015DFA30600), the National Basic Research Program of China (2014CB147200), and the National Natural Science Foundation of China (31301317, 31171555).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youliang Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by M. J. Sillanpaa.

Y. Liu and L. Wang contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, L., Deng, M. et al. Genome-wide association study of phosphorus-deficiency-tolerance traits in Aegilops tauschii . Theor Appl Genet 128, 2203–2212 (2015). https://doi.org/10.1007/s00122-015-2578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2578-x

Keywords

Navigation