Skip to main content
Log in

Shaping melons: agronomic and genetic characterization of QTLs that modify melon fruit morphology

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The consistency of quantitative trait locus (QTL) effects among genetic backgrounds is a key factor for introgressing QTLs from initial mapping experiments into applied breeding programs. We have selected four QTLs (fs6.4, fw4.3, fw4.4 and fw8.1) involved in melon fruit morphology that had previously been detected in a collection of introgression lines derived from the cross between a Spanish cultivar, “Piel de Sapo,” and the Korean accession PI161375 (Songwan Charmi). Introgression lines harboring these QTLs were crossed with an array of melon inbred lines representative of the most important cultivar types. Hybrids of the introgression and inbred lines, with the appropriate controls, were evaluated in replicated agronomic trials. The effects of the QTLs were consistent among the different genetic backgrounds, demonstrating the utility of these QTLs for applied breeding programs in modifying melon fruit morphology. Three QTLs, fw4.4, fs6.4 and fs12.1 were subjected to further study in order to map them more accurately by substitution mapping using a new set of introgression lines with recombination events within the QTL chromosome region. The position of the QTLs was narrowed down to 36–5 cM, depending on the QTL. The results presented in the current study set the basis for the use of these QTLs in applied breeding programs and for the molecular characterization of the genes underlying them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alonso-Blanco C, Aarts MGM, Bentsink L, Keurentjes JJB, Reymond M, Vreugdenhil D, Koornneef M (2009) What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21:1877–1896

    Article  CAS  PubMed  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li HH, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu JM, Zhang ZW, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  CAS  PubMed  Google Scholar 

  • Causse M, Chaib J, Lecomte L, Buret M, Hospital F (2007) Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theor Appl Genet 115:429–442

    Article  CAS  PubMed  Google Scholar 

  • Chaib J, Lecomte L, Buret M, Causse M (2006) Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor Appl Geneti 112:934–944

    Article  CAS  Google Scholar 

  • Chaib J, Devaux MF, Grotte MG, Robini K, Causse M, Lahaye M, Marty I (2007) Physiological relationships among physical, sensory, and morphological attributes of texture in tomato fruits. J Exp Bot 58:1915–1925

    Article  CAS  PubMed  Google Scholar 

  • Concibido VC, La Vallee B, McLaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X (2003) Introgression of a quantitative trait locus for yield from glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582

    CAS  PubMed  Google Scholar 

  • Deleu W, Esteras E, Roig C, González-To M, Fernández-Silva I, Gonzalez-Ibeas D, Blanca J, Aranda A, Arús P, Nuez F, Monforte AJ, Picó MB, Garcia-Mas J (2009) A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol 9:90. doi:10.1186/1471-2229-9-90

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dunnett CW (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50:1096–1121

    Article  Google Scholar 

  • Eduardo I, Arus P, Monforte AJ (2005) Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet 112:139–148

    Article  CAS  PubMed  Google Scholar 

  • Eduardo I, Arus P, Monforte AJ, Obando J, Fernandez-Trujillo JP, Martinez JA, Alarcon AL, Alvarez JM, van der Knaap E (2007) Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hortic Sci 132:80–89

    Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    CAS  PubMed  Google Scholar 

  • Eshed Y, Gera G, Zamir D (1996) A genome-wide search for wild-species alleles that increase horticultural yield of processing tomatoes. Theor Appl Genet 93:877–886

    Article  CAS  Google Scholar 

  • Essafi A, Diaz-Pendon JA, Moriones E, Monforte AJ, Garcia-Mas J, Martin-Hernandez AM (2009) Dissection of the oligogenic resistance to cucumber mosaic virus in the melon accession PI 161375. Theor Appl Genet 118:275–284

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, Pico B, Nuez F, Arus P, Garcia-Mas J, Monforte AJ (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 118:139–150

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Silva I, Moreno E, Eduardo I, Arus P, Alvarez JM, Monforte AJ (2009) On the genetic control of heterosis for fruit shape in melon (Cucumis Melo L.). J Hered 100:229–235

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Nesbitt TC, Grandillo S, van der Knaap E, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Fukino N, Ohara T, Monforte A, Sugiyama M, Sakata Y, Kunihisa M, Matsumoto S (2008) Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L.). Theor Appl Genet 118:165–175

    Article  CAS  PubMed  Google Scholar 

  • Gonzalo MJ, Oliver M, Garcia-Mas J, Monforte AJ, Dolcet-Sanjuan R, Katzir N, Arus P, Monforte A (2005) Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 110:802–811

    Article  CAS  PubMed  Google Scholar 

  • Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PloS Biol 2:1610–1615

    Article  CAS  Google Scholar 

  • Kang ST, Kwak M, Kim HK, Choung MG, Han WY, Baek IY, Kim MY, Van K, Lee SH (2009) Population-specific QTLs and their different epistatic interactions for pod dehiscence in soybean [Glycine max (L.) Merr.]. Euphytica 166:15–24

    Article  Google Scholar 

  • Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  PubMed  Google Scholar 

  • Lecomte L, Duffé P, Buret M, Servin B, Hospital F, Causse M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:658–668

    Article  CAS  PubMed  Google Scholar 

  • Li CB, Zhou AL, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939

    Article  CAS  PubMed  Google Scholar 

  • Li YL, Li XH, Li JZ, Fu JF, Wang YZ, Wei MG (2009) Dent corn genetic background influences QTL detection for grain yield and yield components in high-oil maize. Euphytica 169:273–284

    Article  Google Scholar 

  • Liao CY, Wu P, Hu B, Yi KK (2001) Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet 103:104–111

    Article  CAS  Google Scholar 

  • Liu K, Muse SV (2005) Powermaker Integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Mei HW, Xu JL, Li ZK, Yu XQ, Guo LB, Wang YP, Ying CS, Luo LJ (2006) QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Theor Appl Genet 112:648–656

    Article  CAS  PubMed  Google Scholar 

  • Melchinger AE, Utz HF, Schon CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    CAS  PubMed  Google Scholar 

  • Mihaljevic R, Utz HF, Melchinger AE (2004) Congruency of quantitative trait loci detected for agronomic traits in testcrosses of five populations of European maize. Crop Sci 44:114–124

    Article  CAS  Google Scholar 

  • Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441:947–952

    Article  CAS  PubMed  Google Scholar 

  • Monforte AJ, Tanksley SD (2000) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479

    Article  CAS  Google Scholar 

  • Monforte AJ, Friedman E, Zamir D, Tanksley SD (2001) Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: deductions about natural variation and implications for germplasm utilization. Theor Appl Genet 102:572–590

    Article  CAS  Google Scholar 

  • Monforte AJ, Garcia-Mas J, Arús P (2003) Genetic variability in melon based on microsatellite variation. Plant Breed 122:153–157

    Article  Google Scholar 

  • Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758

    Article  CAS  PubMed  Google Scholar 

  • Monforte AJ, Eduardo I, Abad S, Arús P (2005) Inheritance mode of fruit traits in melon: heterosis for fruit shape and its correlation with genetic distance. Euphytica 144:31–38

    Article  Google Scholar 

  • Moreno E, Fernández-Silva I, Eduardo I, Mascarell A, Álvarez JM, Caño A, Monforte AJ (2008) Agronomical, genetical and developmental characterization of fs6.4: a quantitative trait locus controlling melon fruit shape. In: Pitrat M (ed) Cucurbitaceae 2008, proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, INRA, Avignon (France), pp 101–108

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data II Gene frequency data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Nieto C, Morales M, Orjeda G, Clepet C, Monfort A, Sturbois B, Puigdomenech P, Pitrat M, Caboche M, Dogimont C, Garcia-Mas J, Aranda MA, Bendahmane A (2006) An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J 48:452–462

    Article  CAS  PubMed  Google Scholar 

  • Oliver M, Garcia-Mas J, Cardus M, Pueyo N, Lopez-Sese A, Arroyo M, Gomez-Paniagua H, Arus P, de Vicente MC (2001) Construction of a reference linkage map for melon. Genome 44:836–845

    Article  CAS  PubMed  Google Scholar 

  • Paris MK, Zalapa JE, McCreight JD, Staub JE (2008) Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic 3 elite US Western Shipping germplasm. Mol Breed 22:405–419

    Article  CAS  Google Scholar 

  • Paterson AH, Deverna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–742

    CAS  PubMed  Google Scholar 

  • Perin C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002a) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Gen Genomics 266:933–941

    Article  CAS  Google Scholar 

  • Perin C, Hagen LS, De Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M (2002b) A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 104:1017–1034

    Article  CAS  PubMed  Google Scholar 

  • Pumprey MO, Bernardo R, Anderson JA (2007) Validating the Fhbi ATL for fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci 47:200–206

    Article  CAS  Google Scholar 

  • Robinson RW, Decker-Walters DS (1997) Cucurbits. Crop production science in horticulture, 6. CAB International, New York, USA

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus m maize. In: Proceedings of the national academy of sciences of the United States of America 104:11376–11381

    Google Scholar 

  • Schon CC, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498

    Article  PubMed  Google Scholar 

  • Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432

    Article  CAS  PubMed  Google Scholar 

  • Simons KJ, Fellers JP, Trick HN, Zhang ZC, Tai YS, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555

    Article  CAS  PubMed  Google Scholar 

  • Steele KA, Price AH, Shashidhar HE, Witcombe JR (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112:208–221

    Article  CAS  PubMed  Google Scholar 

  • Stepansky A, Kovalski I, Perl-Treves R (1999) Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol 217:313–332

    Article  CAS  Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493

    Article  CAS  PubMed  Google Scholar 

  • Villalta I, Bernet GP, Carbonell EA, Asíns MJ (2007) Comparative QTL analysis of salinity tolerance in terms of fruit yield using two Solanum populations of F7 lines. Theor Appl Genet 114:1001–1017

    Article  CAS  PubMed  Google Scholar 

  • Xu SZ (2003) Theoretical basis of the Beavis effect. Genetics 165:2259–2268

    PubMed  Google Scholar 

  • Zalapa JE, Staub JE, McCreight JD, Chung SM, Cuevas H (2007) Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet 114:1185–1201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Angel Montejo, Antonio Ortigosa and Fuensanta García for their technical support. This work has been supported in part by grants AGL2006-12780-C02-01 and AGL2009-12698-C02-02 of the Ministerio de Ciencia e Innovación (Spain) and the Fondo Europeo de Desarrollo Regional (FEDER, European Union). EM, IF-S, AE and MF were supported by predoctoral fellowships from AGAUR (Generalitat de Catalunya), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, Spain) and predoctoral and postdoctoral fellowships from the Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB (Spain), respectively. Semillas Fitó S. A. provided the elite inbred lines and also performed the crosses between introgression lines and inbreds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Monforte.

Additional information

Communicated by I. Paran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2010_1361_MOESM1_ESM.jpg

Snapshot of representative fruit from the recurrent parental PS and the NILs SC4-3, SC4-4, SC6-3, SC8-1, SC12-1 selected for the current study. The scale is shown on the left (JPEG 476 kb)

122_2010_1361_MOESM2_ESM.ppt

Neighbor-joining tree based on Nei’s genetic distances (Nei et al. 1983) calculated from SSR variation depicting the genetic relationships among selected the elite inbreds, “Amarillo” (AMA), “Cantaloup” (CAN), “Galia” (GAL), “Piel de Sapo” (PS, PS2, PS3) and “Vedrantais” (VED) and an array of reference genotypes: PI 124112 (INB), PI 385966 (EIN), PI 161375 (SC), Ames24297 (TRI) and PI 435288 (FLEX). The bar on the bottom indicates the genetic distance scale (PPT 37 kb)

122_2010_1361_MOESM3_ESM.jpg

Snapshot of representative fruit from the hybrids between the recurrent parental "Piel de Sapo" (PS) and the elite inbreds "Amarillo" (AMA), "Cantaloup" (CAN), "Galia" (GAL), "Piel de Sapo" (PS2, PS3) and "Vedrantais" (VED). The scale is shown on the bottm to the right (JPEG 2,220 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez-Silva, I., Moreno, E., Essafi, A. et al. Shaping melons: agronomic and genetic characterization of QTLs that modify melon fruit morphology. Theor Appl Genet 121, 931–940 (2010). https://doi.org/10.1007/s00122-010-1361-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1361-2

Keywords

Navigation