Skip to main content
Log in

Association of angiotensin-converting enzyme 2 (ACE2) gene polymorphisms with parameters of left ventricular hypertrophy in men

Results of the MONICA Augsburg echocardiographic substudy

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Angiotensin-converting enzyme (ACE) activity is considered to be of major importance for the conversion of angiotensin (Ang) I to Ang II. Recently, a second ACE, named ACE2, has been identified. Experimental data provide evidence that ACE2 might be involved in modulating cardiac structure and function. In the present explorative study, we assessed whether polymorphisms in the ACE2 gene are related to echocardiographically determined parameters of left ventricular mass, structure or function in the general population. Five intronic single nucleotide polymorphisms (SNPs) were genotyped using the 5′-exonuclease activity (TaqMan) assay in the echocardiographic substudy of the third MONICA Augsburg survey. As ACE2 is located on the X chromosome, women and men were analysed separately. Four SNPs showed high pairwise linkage disequilibrium (rs4646156, rs879922, rs4240157 and rs233575). The minor alleles of these four SNPs were associated with higher left ventricular mass index (LVMI) and higher septal wall thickness (SWT) in men. Likewise, male carriers of a common haplotype (frequency 29.9%) consisting of the minor alleles of these four SNPs displayed higher values for LVMI and SWT than non-carriers (LVMI: TGGC 98.8±1.52 vs non-TGGC 94.8±0.99 g/m2, p=0.027; SWT: TGGC 11.5±0.14 vs non-TGGC 11.1±0.09 mm, p=0.019). Furthermore, this haplotype was associated with an increased odds ratio (OR) for left ventricular hypertrophy (OR 3.10, p=0.006). In women, similar but less pronounced and consistent trends were observed. No association was observed between any of these SNPs and parameters of left ventricular systolic or diastolic function nor with blood pressure levels. This study provides evidence that genetic variants in the ACE2 gene may be associated with left ventricular mass, SWT and left ventricular hypertrophy in hemizygous men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Eriksson U, Danilczyk U, Penninger JM (2002) Just the beginning: novel functions for angiotensin-converting enzymes. Curr Biol 12:R745–R752

    Article  PubMed  Google Scholar 

  2. Schunkert H, Sadoshima J, Cornelius T, Kagaya Y, Weinberg EO, Izumo S, Riegger G, Lorell BH (1995) Angiotensin II-induced growth responses in isolated adult rat hearts. Evidence for load-independent induction of cardiac protein synthesis by angiotensin II. Circ Res 76:489–497

    PubMed  Google Scholar 

  3. Schunkert H, Dzau VJ, Tang SS, Hirsch AT, Apstein CS, Lorell BH (1990) Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest 86:1913–1920

    PubMed  Google Scholar 

  4. Bruckschlegel G, Holmer SR, Jandeleit K, Grimm D, Muders F, Kromer EP, Riegger GA, Schunkert H (1995) Blockade of the renin-angiotensin system in cardiac pressure-overload hypertrophy in rats. Hypertension 25:250–259

    PubMed  Google Scholar 

  5. Weinberg EO, Schoen FJ, George D, Kagaya Y, Douglas PS, Litwin SE, Schunkert H, Benedict CR, Lorell BH (1994) Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation 90:1410–1422

    PubMed  Google Scholar 

  6. Schmieder RE, Schlaich MP, Klingbeil AU, Martus P (1998) Update on reversal of left ventricular hypertrophy in essential hypertension (a meta-analysis of all randomized double-blind studies until December 1996). Nephrol Dial Transplant 13:564–569

    Article  PubMed  Google Scholar 

  7. Palmieri V, Devereux RB (2002) Angiotensin converting enzyme inhibition and dihydropyridine calcium channel blockade in the treatment of left ventricular hypertrophy in arterial hypertension. Minerva Cardioangiol 50:169–174

    PubMed  Google Scholar 

  8. Devereux RB, Palmieri V, Sharpe N, de Quattro V, Bella JN, de Simone G, Walker JF, Hahn RT, Dahlof B (2001) Effects of once-daily angiotensin-converting enzyme inhibition and calcium channel blockade-based antihypertensive treatment regimens on left ventricular hypertrophy and diastolic filling in hypertension: the prospective randomized enalapril study evaluating regression of ventricular enlargement (preserve) trial. Circulation 104:1248–1254

    PubMed  Google Scholar 

  9. Schunkert H, Hense HW, Holmer SR, Stender M, Perz S, Keil U, Lorell BH, Riegger GA (1994) Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med 330:1634–1638

    Article  PubMed  Google Scholar 

  10. Iwai N, Ohmichi N, Nakamura Y, Kinoshita M (1994) DD genotype of the angiotensin-converting enzyme gene is a risk factor for left ventricular hypertrophy. Circulation 90:2622–2628

    PubMed  Google Scholar 

  11. Schmieder RE, Erdmann J, Delles C, Jacobi J, Fleck E, Hilgers K, Regitz-Zagrosek V (2001) Effect of the angiotensin II type 2-receptor gene (+1675 G/A) on left ventricular structure in humans. J Am Coll Cardiol 37:175–182

    Article  PubMed  Google Scholar 

  12. Delles C, Erdmann J, Jacobi J, Hilgers KF, Fleck E, Regitz-Zagrosek V, Schmieder RE (2001) Aldosterone synthase (CYP11B2)-344 C/T polymorphism is associated with left ventricular structure in human arterial hypertension. J Am Coll Cardiol 37:878–884

    Article  PubMed  Google Scholar 

  13. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 87:E1–E9

    PubMed  Google Scholar 

  14. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275:33238–33243

    Article  PubMed  Google Scholar 

  15. Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277:14838–14843

    Article  PubMed  Google Scholar 

  16. Ren Y, Garvin JL, Carretero OA (2002) Vasodilator action of angiotensin-(1–7) on isolated rabbit afferent arterioles. Hypertension 39:799–802

    Article  PubMed  Google Scholar 

  17. Lemos VS, Cortes SF, Silva DM, Campagnole-Santos MJ, Santos RA (2002) Angiotensin-(1–7) is involved in the endothelium-dependent modulation of phenylephrine-induced contraction in the aorta of mRen-2 transgenic rats. Br J Pharmacol 135:1743–1748

    Article  PubMed  Google Scholar 

  18. Danilczyk U, Eriksson U, Crackower MA, Penninger JM (2003) A story of two ACEs. J Mol Med 81:227–234

    PubMed  Google Scholar 

  19. Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, Oliveira-dos-Santos AJ, da Costa J, Zhang L, Pei Y, Scholey J, Ferrario CM, Manoukian AS, Chappell MC, Backx PH, Yagil Y, Penninger JM (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417:822–828

    Article  PubMed  Google Scholar 

  20. Goulter AB, Goddard MJ, Allen JC, Clark KL (2004) ACE2 gene expression is up-regulated in the human failing heart. BMC Med 2:19

    Article  PubMed  Google Scholar 

  21. Burrell LM, Risvanis J, Kubota E, Dean RG, MacDonald PS, Lu S, Tikellis C, Grant SL, Lew RA, Smith AI, Cooper ME, Johnston CI (2005) Myocardial infarction increases ACE2 expression in rat and humans. Eur Heart J 26:369–375

    Article  PubMed  Google Scholar 

  22. Kuch B, Hense HW, Gneiting B, Doring A, Muscholl M, Brockel U, Schunkert H (2000) Body composition and prevalence of left ventricular hypertrophy. Circulation 102:405–410

    PubMed  Google Scholar 

  23. Schunkert H, Hengstenberg C, Holmer SR, Broeckel U, Luchner A, Muscholl MW, Kurzinger S, Doring A, Hense HW, Riegger GA (1999) Lack of association between a polymorphism of the aldosterone synthase gene and left ventricular structure. Circulation 99:2255–2260

    PubMed  Google Scholar 

  24. Devereux RB, Lutas EM, Casale PN, Kligfield P, Eisenberg RR, Hammond IW, Miller DH, Reis G, Alderman MH, Laragh JH (1984) Standardization of M-mode echocardiographic left ventricular anatomic measurements. J Am Coll Cardiol 4:1222–1230

    PubMed  Google Scholar 

  25. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458

    Article  PubMed  Google Scholar 

  26. Schunkert H, Hense HW, Muscholl M, Luchner A, Kurzinger S, Danser AH, Riegger GA (1997) Associations between circulating components of the renin-angiotensin-aldosterone system and left ventricular mass. Heart 77:24–31

    PubMed  Google Scholar 

  27. Teichholz LE, Kreulen T, Herman MV, Gorlin R (1976) Problems in echocardiographic volume determinations: echocardiographic–angiographic correlations in the presence of absence of asynergy. Am J Cardiol 37:7–11

    Article  PubMed  Google Scholar 

  28. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70:425–434

    Article  PubMed  Google Scholar 

  29. Fischer M, Baessler A, Schunkert H (2002) Renin angiotensin system and gender differences in the cardiovascular system. Cardiovasc Res 53:672–677

    Article  PubMed  Google Scholar 

  30. O’Donnell CJ, Lindpaintner K, Larson MG, Rao VS, Ordovas JM, Schaefer EJ, Myers RH, Levy D (1998) Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study. Circulation 97:1766–1772

    PubMed  Google Scholar 

  31. Fornage M, Amos CI, Kardia S, Sing CF, Turner ST, Boerwinkle E (1998) Variation in the region of the angiotensin-converting enzyme gene influences interindividual differences in blood pressure levels in young white males. Circulation 97:1773–1779

    PubMed  Google Scholar 

  32. Kuznetsova T, Staessen JA, Thijs L, Kunath C, Olszanecka A, Ryabikov A, Tikhonoff V, Stolarz K, Bianchi G, Casiglia E, Fagard R, Brand-Herrmann SM, Kawecka-Jaszcz K, Malyutina S, Nikitin Y, Brand E, European Project On Genes in Hypertension (EPOGH) Investigators (2004) Left ventricular mass in relation to genetic variation in angiotensin II receptors, renin system genes, and sodium excretion. Circulation 110:2644–2650

    Article  PubMed  Google Scholar 

  33. Kuznetsova T, Staessen JA, Reineke T, Olszanecka A, Ryabikov A, Tikhonoff V, Stolarz K, Bianchi G, Casiglia E, Fagard R, Brand-Herrmann SM, Kawecka-Jaszcz K, Nikitin Y, Brand E, European Project On Genes in Hypertension (EPOGH) Investigators (2005) Context-dependency of the relation between left ventricular mass and AGT gene variants. J Hum Hypertens 19:155–163

    Article  PubMed  Google Scholar 

  34. Williams GH, Fisher ND, Hunt SC, Jeunemaitre X, Hopkins PN, Hollenberg NK (2000) Effects of gender and genotype on the phenotypic expression of nonmodulating essential hypertension. Kidney Int 57:1404–1407

    Article  PubMed  Google Scholar 

  35. Benjafield AV, Wang WY, Morris BJ (2004) No association of angiotensin-converting enzyme 2 gene (ACE2) polymorphisms with essential hypertension. Am J Hypertens 17:624–628

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Deutsche Forschungsgemeinschaft (Schu672/9-1, Schu672/10-1, Schu672/12-1, Schu672/14-1, Ho1073/8-1), the Federal Ministry of Research (Dr. Löwel FKZ 01ER9502/0, Dr. Schunkert KBF-FKZ 01GB9403), the National Genome Network (01GS0418 to Dr. Schunkert, Dr. Erdmann and Dr. Hengstenberg and 01GR0466 to Dr. König), The Ernst-and Berta-Grimmke-Stiftung (Dr. Hengstenberg and Dr. Schunkert), the Wilhelm-Vaillant-Stiftung (Dr. Hengstenberg, Dr. Schunkert and Dr. Holmer) and the Deutsche Stiftung für Herzforschung (Dr. Hengstenberg and Dr. Schunkert).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanette Erdmann.

Additional information

W. Lieb and J. Graf contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieb, W., Graf, J., Götz, A. et al. Association of angiotensin-converting enzyme 2 (ACE2) gene polymorphisms with parameters of left ventricular hypertrophy in men. J Mol Med 84, 88–96 (2006). https://doi.org/10.1007/s00109-005-0718-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0718-5

Keywords

Navigation