Skip to main content
Log in

Die Bedeutung von AGEs und ROS bei Atherosklerose

The Role of AGEs and ROS in Atherosclerosis

  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

„Advanced glycation end products“ (AGEs) zählen zu den „Newcomern“ der metabolischen Forschung der letzten 2–3 Jahrzehnte. Auch als Maillard-Produkte bekannt, gehören sie seit längerem zum Alltag der Lebensmittelforschung, allerdings wurde ihre Rolle in der Entstehung von Diabetes- und kardiovaskulären Komplikationen erst unlängst vermutet. Obwohl sich zahlreiche Studien der letzten Jahre mit der Rolle der AGEs und deren Rezeptoren in der Vermittlung von Pathomechanismen beschäftigt haben, sind wir noch weit davon entfernt, diese komplett zu verstehen, und vielleicht noch weiter davon, wirksame therapeutische Maßnahmen zu entwickeln. Nichtsdestotrotz versucht dieser Artikel, einen Überblick über die uns bekannten Assoziationen zwischen AGEs und Gefäßkomplikationen zu geben, um auf ein vielleicht nicht so bekanntes Thema – die AGEs – hinzuweisen und womöglich weitere Forschungsbemühungen in diesem spannenden Bereich anzuregen.

Abstract

Advanced glycation end products (AGEs) are among the „newcomers“ of metabolic research during the last 2–3 decades. Also known as Maillard products, they have belonged to the everyday life of food research for a long time, but their role in the development of diabetes and cardiovascular complications has been suggested only recently. Even though multiple studies have recently dealt with the role of AGEs and their receptors in mediating pathomechanisms, we are still far from understanding them completely and maybe even farther from developing effective therapeutic approaches. Nevertheless, the present article attempts to offer an overview of known associations between AGEs and vascular complications, in order to draw attention to a less known subject – the AGEs – and, maybe, to stimulate further research in this very exciting field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004;110:227–39.

    Article  PubMed  Google Scholar 

  2. Stamler J, Vaccaro O, Neaton JD, et al. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993;16:434–44.

    Article  PubMed  CAS  Google Scholar 

  3. Panzram G. Mortality and survival in type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1987;30:123–31.

    Article  PubMed  CAS  Google Scholar 

  4. Haffner SM, Lehto S, Ronnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998;339:229–34.

    Article  PubMed  CAS  Google Scholar 

  5. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801–9.

    Article  PubMed  CAS  Google Scholar 

  6. Kawano H, Motoyama T, Hirashima O, et al. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol 1999;34:146–54.

    Article  PubMed  CAS  Google Scholar 

  7. Taddei S, Ghiadoni L, Virdis A, et al. Mechanisms of endothelial dysfunction: clinical significance and preventive non-pharmacological therapeutic strategies. Curr Pharm Des 2003;9:2385–402.

    Article  PubMed  CAS  Google Scholar 

  8. Ceriello A, Taboga C, Tonutti L, et al. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment. Circulation 2002;106:1211–8.

    Article  PubMed  Google Scholar 

  9. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005;54:1615–25.

    Article  PubMed  CAS  Google Scholar 

  10. Huebschmann AG, Regensteiner JG, Vlassara H, et al. Diabetes and advanced glycoxidation end products. Diabetes Care 2006;29:1420–32.

    Article  PubMed  CAS  Google Scholar 

  11. Ahmed N. Advanced glycation endproducts — role in pathology of diabetic complications. Diabetes Res Clin Pract 2005;67:3–21.

    Article  PubMed  CAS  Google Scholar 

  12. Schiekofer S, Andrassy M, Chen J, et al. Acute hyperglycemia causes intracellular formation of CML and activation of ras, p42/44 MAPK, and nuclear factor kappaB in PBMCs. Diabetes 2003;52:621–33.

    Article  PubMed  CAS  Google Scholar 

  13. Vlassara H, Bucala R. Recent progress in advanced glycation and diabetic vascular disease: role of advanced glycation end product receptors. Diabetes 1996;45:Suppl 3:S65–6.

    PubMed  CAS  Google Scholar 

  14. Giardino I, Edelstein D, Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest 1994;94:110–7.

    Article  PubMed  CAS  Google Scholar 

  15. Furth A. J. Glycated proteins in diabetes. Br J Biomed Sci 1997;54:192–200.

    PubMed  CAS  Google Scholar 

  16. McCance DR, Dyer DG, Dunn JA, et al. Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest 1993;91:2470–8.

    Article  PubMed  CAS  Google Scholar 

  17. Bierhaus A, Hofmann MA, Ziegler R, et al. AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res 1998;37:586–600.

    Article  PubMed  CAS  Google Scholar 

  18. Miyata T, Kurokawa K, van Ypersele de Strihou C. Advanced glycation and lipoxidation end products: role of reactive carbonyl compounds generated during carbohydrate and lipid metabolism. J Am Soc Nephrol 2000;11:1744–52.

    PubMed  CAS  Google Scholar 

  19. Goldberg T, Cai W, Peppa M, et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc 2004;104:1287–91.

    Article  PubMed  CAS  Google Scholar 

  20. McLellan AC, Thornalley PJ, Benn J, et al. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin Sci (Lond) 1994;87:21–9.

    CAS  Google Scholar 

  21. Charonis AS, Reger LA, Dege JE, et al. Laminin alterations after in vitro nonenzymatic glycosylation. Diabetes 1990;39:807–14.

    Article  PubMed  CAS  Google Scholar 

  22. Vlassara H, Cai W, Crandall J, et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci U S A 2002;99:15596–601.

    Article  PubMed  CAS  Google Scholar 

  23. Vlassara H. Advanced glycation end-products and atherosclerosis. Ann Med 1996;28:419–26.

    Article  PubMed  CAS  Google Scholar 

  24. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991;40:405–12.

    Article  PubMed  CAS  Google Scholar 

  25. Vlassara H, Palace MR. Diabetes and advanced glycation endproducts. J Intern Med 2002;251:87–101.

    Article  PubMed  CAS  Google Scholar 

  26. Monnier VM, Mustata GT, Biemel KL, et al. Cross-linking of the extracellular matrix by the Maillard reaction in aging and diabetes: an update on “a puzzle nearing resolution”. Ann N Y Acad Sci 2005;1043:533–44.

    Article  PubMed  CAS  Google Scholar 

  27. Singh R, Barden A, Mori T, et al. Advanced glycation end-products: a review. Diabetologia 2001;44:129–46.

    Article  PubMed  CAS  Google Scholar 

  28. Bucala R, Makita Z, Koschinsky T, et al. Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci U S A 1993;90:6434–8.

    Article  PubMed  CAS  Google Scholar 

  29. Vlassara H. The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab Res Rev 2001;17:436–43.

    Article  PubMed  CAS  Google Scholar 

  30. Bierhaus A, Humpert PM, Morcos M, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 2005;83:876–86.

    Article  PubMed  CAS  Google Scholar 

  31. Zhou Z, Immel D, Xi CX, et al. Regulation of osteoclast function and bone mass by RAGE. J Exp Med 2006;203:1067–80.

    Article  PubMed  CAS  Google Scholar 

  32. Lu C, He JC, Cai W, et al. Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc Natl Acad Sci U S A 2004;101:11767–72.

    Article  PubMed  CAS  Google Scholar 

  33. Pugliese G, Pricci F, Iacobini C, et al. Accelerated diabetic glomerulopathy in galectin-3/AGE receptor 3 knockout mice. FASEB J 2001;15:2471–9.

    Article  PubMed  CAS  Google Scholar 

  34. Li JJ, Dickson D, Hof PR, et al. Receptors for advanced glycosylation endproducts in human brain: role in brain homeostasis. Mol Med 1998;4:46–60.

    PubMed  CAS  Google Scholar 

  35. Vlassara H. Recent progress in advanced glycation end products and diabetic complications. Diabetes 1997;46:Suppl 2:S19–25.

    PubMed  CAS  Google Scholar 

  36. Stitt AW, He C, Vlassara H. Characterization of the advanced glycation end-product receptor complex in human vascular endothelial cells. Biochem Biophys Res Commun 1999;256:549–56.

    Article  PubMed  CAS  Google Scholar 

  37. Reddy GK. Cross-linking in collagen by nonenzymatic glycation increases the matrix stiffness in rabbit achilles tendon. Exp Diabesity Res 2004;5:143–53.

    Article  PubMed  CAS  Google Scholar 

  38. McFarlane S, Glenn JV, Lichanska AM, et al. Characterisation of the advanced glycation endproduct receptor complex in the retinal pigment epithelium. Br J Ophthalmol 2005;89:107–12.

    Article  PubMed  CAS  Google Scholar 

  39. Bucciarelli LG, Wendt T, Rong L, et al. RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease. Cell Mol Life Sci 2002;59:1117–28.

    Article  PubMed  CAS  Google Scholar 

  40. Ramasamy R, Vannucci SJ, Yan SS, et al. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 2005;15:16R–28R.

    Article  PubMed  CAS  Google Scholar 

  41. Rosen P, Nawroth PP, King G, et al. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a congress series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 2001;17:189–212.

    Article  PubMed  CAS  Google Scholar 

  42. Neumann A, Schinzel R, Palm D, et al. High molecular weight hyaluronic acid inhibits advanced glycation end-product-induced NF-kappaB activation and cytokine expression. FEBS Lett 1999;453:283–7.

    Article  PubMed  CAS  Google Scholar 

  43. Yan SD, Schmidt AM, Anderson GM, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 1994;269:9889–97.

    PubMed  CAS  Google Scholar 

  44. Wever RM, Luscher TF, Cosentino F, et al. Atherosclerosis and the two faces of endothelial nitric oxide synthase. Circulation 1998;97:108–12.

    PubMed  CAS  Google Scholar 

  45. Griscavage JM, Wilk S, Ignarro LJ. Inhibitors of the proteasome pathway interfere with induction of nitric oxide synthase in macrophages by blocking activation of transcription factor NF-kappa B. Proc Natl Acad Sci U S A 1996;93:3308–12.

    Article  PubMed  CAS  Google Scholar 

  46. Mohamed AK, Bierhaus A, Schiekofer S, et al. The role of oxidative stress and NF-kappaB activation in late diabetic complications. Biofactors 1999;10:157–67.

    Article  PubMed  CAS  Google Scholar 

  47. Kowluru RA. Effect of advanced glycation end products on accelerated apoptosis of retinal capillary cells under in vitro conditions. Life Sci 2005;76:1051–60.

    Article  PubMed  CAS  Google Scholar 

  48. Cipollone F, Iezzi A, Fazia M, et al. The receptor RAGE as a progression factor amplifying arachidonate-dependent inflammatory and proteolytic response in human atherosclerotic plaques: role of glycemic control. Circulation 2003;108:1070–7.

    Article  PubMed  CAS  Google Scholar 

  49. Stern DM, Yan SD, Yan SF, et al. Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Res Rev 2002;1:1–15.

    Article  PubMed  CAS  Google Scholar 

  50. He CJ, Koschinsky T, Buenting C, et al. Presence of diabetic complications in type 1 diabetic patients correlates with low expression of mononuclear cell AGE-receptor-1 and elevated serum AGE. Mol Med 2001;7:159–68.

    PubMed  CAS  Google Scholar 

  51. Cai W, He JC, Zhu L, et al. Advanced glycation end product (AGE) receptor 1 suppresses cell oxidant stress and activation signaling via EGF receptor. Proc Natl Acad Sci U S A 2006;103:13801–6.

    Article  PubMed  CAS  Google Scholar 

  52. Vlassara H, Uribarri J. Glycoxidation and diabetic complications: modern lessons and a warning? Rev Endocr Metab Disord 2004;5:181–8.

    Article  PubMed  CAS  Google Scholar 

  53. Rojas A, Morales MA. Advanced glycation and endothelial functions: a link towards vascular complications in diabetes. Life Sci 2004;76:715–30.

    Article  PubMed  CAS  Google Scholar 

  54. Basta G, Lazzerini G, Massaro M, et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 2002;105:816–22.

    Article  PubMed  CAS  Google Scholar 

  55. Schmidt AM, Yan SD, Wautier JL, et al. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 1999;84:489–97.

    PubMed  CAS  Google Scholar 

  56. Yamagishi S, Fujimori H, Yonekura H, et al. Advanced glycation endproducts inhibit prostacyclin production and induce plasminogen activator inhibitor-1 in human microvascular endothelial cells. Diabetologia 1998;41:1435–41.

    Article  PubMed  CAS  Google Scholar 

  57. Gawlowski T, Stratmann B, Stirban AO, et al. AGEs and methylglyoxal induce apoptosis and expression of Mac-1 on neutrophils resulting in platelet-neutrophil aggregation. Thromb Res 2007;121:117–26.

    Article  PubMed  CAS  Google Scholar 

  58. Gawlowski T, Stratmann B, Ruetter R, et al. Advanced glycation end products strongly activate platelets. Eur J Nutr 2009;48:475–81.

    Article  PubMed  CAS  Google Scholar 

  59. Cerami C, Founds H, Nicholl I, et al. Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci U S A 1997;94:13915–20.

    Article  PubMed  CAS  Google Scholar 

  60. Vlassara H. Advanced glycation in health and disease: role of the modern environment. Ann N Y Acad Sci 2005;1043:452–60.

    Article  PubMed  CAS  Google Scholar 

  61. Koschinsky T, He CJ, Mitsuhashi T, et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A 1997;94:6474–9.

    Article  PubMed  CAS  Google Scholar 

  62. Forster A, Kuhne Y, Henle T. Studies on absorption and elimination of dietary Maillard reaction products. Ann N Y Acad Sci 2005;1043:474–81.

    Article  PubMed  CAS  Google Scholar 

  63. Beisswenger PJ, Howell SK, O’Dell RM, et al. Alpha-dicarbonyls increase in the postprandial period and reflect the degree of hyperglycemia. Diabetes Care 2001;24:726–32.

    Article  PubMed  CAS  Google Scholar 

  64. Makita Z, Radoff S, Rayfield EJ, et al. Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med 1991;325:836–42.

    Article  PubMed  CAS  Google Scholar 

  65. Vlassara H, Palace MR. Glycoxidation: the menace of diabetes and aging. Mt Sinai J Med 2003;70:232–41.

    PubMed  Google Scholar 

  66. Turk N, Mornar A, Mrzljak V, et al. Urinary excretion of advanced glycation endproducts in patients with type 2 diabetes and various stages of proteinuria. Diabetes Metab 2004;30:187–92.

    Article  PubMed  CAS  Google Scholar 

  67. Smedsrod B, Melkko J, Araki N, et al. Advanced glycation end products are eliminated by scavenger-receptor-mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cells. Biochem J 1997;322:567–73.

    PubMed  CAS  Google Scholar 

  68. Sano H, Higashi T, Matsumoto K, et al. Insulin enhances macrophage scavenger receptor-mediated endocytic uptake of advanced glycation end products. J Biol Chem 1998;273:8630–7.

    Article  PubMed  CAS  Google Scholar 

  69. Sano H, Nagai R, Matsumoto K, et al. Receptors for proteins modified by advanced glycation endproducts (AGE) — their functional role in atherosclerosis. Mech Ageing Dev 1999;107:333–46.

    Article  PubMed  CAS  Google Scholar 

  70. Stitt AW, He C, Friedman S, et al. Elevated AGE-modified ApoB in sera of euglycemic, normolipidemic patients with atherosclerosis: relationship to tissue AGEs. Mol Med 1997;3:617–27.

    PubMed  CAS  Google Scholar 

  71. Niwa T, Katsuzaki T, Miyazaki S, et al. Immunohistochemical detection of imidazolone, a novel advanced glycation end product, in kidneys and aortas of diabetic patients. J Clin Invest 1997;99:1272–80.

    Article  PubMed  CAS  Google Scholar 

  72. Lopes-Virella MF, Klein RL, Lyons TJ, et al. Glycosylation of low-density lipoprotein enhances cholesteryl ester synthesis in human monocyte-derived macrophages. Diabetes 1988;37:550–7.

    Article  PubMed  CAS  Google Scholar 

  73. Goldstein JL, Ho YK, Basu SK, et al. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A 1979;76:333–7.

    Article  PubMed  CAS  Google Scholar 

  74. Bucala R, Makita Z, Vega G, et al. Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proc Natl Acad Sci U S A 1994;91:9441–5.

    Article  PubMed  CAS  Google Scholar 

  75. Duell PB, Oram JF, Bierman EL. Nonenzymatic glycosylation of HDL and impaired HDL-receptor-mediated cholesterol efflux. Diabetes 1991;40:377–84.

    Article  PubMed  CAS  Google Scholar 

  76. Brownlee M, Vlassara H, Cerami A. Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein. Diabetes 1985;34:938–41.

    Article  PubMed  CAS  Google Scholar 

  77. Zhang J, Ren S, Shen GX. Glycation amplifies lipoprotein(a)-induced alterations in the generation of fibrinolytic regulators from human vascular endothelial cells. Atherosclerosis 2000;150:299–308.

    Article  PubMed  CAS  Google Scholar 

  78. Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 1991;87:432–8.

    Article  PubMed  CAS  Google Scholar 

  79. Wang X, Desai K, Chang T, et al. Vascular methylglyoxal metabolism and the development of hypertension. J Hypertens 2005;23:1565–73.

    Article  PubMed  CAS  Google Scholar 

  80. Rodriguez-Manas L, Angulo J, Vallejo S, et al. Early and intermediate Amadori glycosylation adducts, oxidative stress, and endothelial dysfunction in the streptozotocin-induced diabetic rats vasculature. Diabetologia 2003;46:556–66.

    PubMed  CAS  Google Scholar 

  81. Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 2004;24:816–23.

    Article  PubMed  CAS  Google Scholar 

  82. Guerci B, Bohme P, Kearney-Schwartz A, et al. Endothelial dysfunction and type 2 diabetes. Part 2: Altered endothelial function and the effects of treatments in type 2 diabetes mellitus. Diabetes Metab 2001;27:436–47.

    PubMed  CAS  Google Scholar 

  83. Bast A, Wolf G, Oberbaumer I, et al. Oxidative and nitrosative stress induces peroxiredoxins in pancreatic beta cells. Diabetologia 2002;45:867–76.

    Article  PubMed  CAS  Google Scholar 

  84. Ceriello A. Nitrotyrosine: new findings as a marker of post-prandial oxidative stress. Int J Clin Pract Suppl 2002;129:51–8.

    PubMed  CAS  Google Scholar 

  85. Gopaul NK, Anggard EE, Mallet AI, et al. Plasma 8-epi-PGF2 alpha levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Lett 1995;368:225–9.

    Article  PubMed  CAS  Google Scholar 

  86. Altomare E, Vendemiale G, Chicco D, et al. Increased lipid peroxidation in type 2 poorly controlled diabetic patients. Diabete Metab 1992;18:264–71.

    PubMed  CAS  Google Scholar 

  87. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care 1996;19:257–67.

    Article  PubMed  CAS  Google Scholar 

  88. Heitzer T, Schlinzig T, Krohn K, et al. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 2001;104:2673–8.

    Article  PubMed  CAS  Google Scholar 

  89. Gabbay KH, Merola LO, Field RA. Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science 1966;151:209–10.

    Article  PubMed  CAS  Google Scholar 

  90. Ceriello A. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 2003;26:1589–96.

    Article  PubMed  CAS  Google Scholar 

  91. Lee AY, Chung SS. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J 1999;13:23–30.

    PubMed  CAS  Google Scholar 

  92. Sebekova K, Gazdikova K, Syrova D, et al. Effects of ramipril in nondiabetic nephropathy: improved parameters of oxidatives stress and potential modulation of advanced glycation end products. J Hum Hypertens 2003;17:265–70.

    Article  PubMed  CAS  Google Scholar 

  93. Nathan DM, Lachin J, Cleary P, et al. Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. N Engl J Med 2003;348:2294–303.

    Article  PubMed  Google Scholar 

  94. Nathan DM, Cleary PA, Backlund JY, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005;353:2643–53.

    Article  PubMed  Google Scholar 

  95. Yamagishi S, Imaizumi T. Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des 2005;11:2279–99.

    Article  PubMed  CAS  Google Scholar 

  96. Sandu O, Song K, Cai W, et al. Insulin resistance and type 2 diabetes in high-fat-fed mice are linked to high glycotoxin intake. Diabetes 2005;54:2314–9.

    Article  PubMed  CAS  Google Scholar 

  97. Lin RY, Reis ED, Dore AT, et al. Lowering of dietary advanced glycation endproducts (AGE) reduces neointimal formation after arterial injury in genetically hypercholesterolemic mice. Atherosclerosis 2002;163:303–11.

    Article  PubMed  CAS  Google Scholar 

  98. Lin RY, Choudhury RP, Cai W, et al. Dietary glycotoxins promote diabetic atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 2003;168:213–20.

    Article  PubMed  CAS  Google Scholar 

  99. Peppa M, Brem H, Ehrlich P, et al. Adverse effects of dietary glycotoxins on wound healing in genetically diabetic mice. Diabetes 2003;52:2805–13.

    Article  PubMed  CAS  Google Scholar 

  100. Zheng F, He C, Cai W, et al. Prevention of diabetic nephropathy in mice by a diet low in glycoxidation products. Diabetes Metab Res Rev 2002;18:224–37.

    Article  PubMed  Google Scholar 

  101. Hofmann SM, Dong HJ, Li Z, et al. Improved insulin sensitivity is associated with restricted intake of dietary glycoxidation products in the db/db mouse. Diabetes 2002;51:2082–9.

    Article  PubMed  CAS  Google Scholar 

  102. Forbes JM, Yee LT, Thallas V, et al. Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. Diabetes 2004;53:1813–23.

    Article  PubMed  CAS  Google Scholar 

  103. Berlanga J, Cibrian D, Guillen I, et al. Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds. Clin Sci (Lond) 2005;109:83–95.

    Article  CAS  Google Scholar 

  104. Tamarat R, Silvestre JS, Huijberts M, et al. Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice. Proc Natl Acad Sci U S A 2003;100:8555–60.

    Article  PubMed  CAS  Google Scholar 

  105. Ahmed N, Thornalley PJ. Advanced glycation endproducts: what is their relevance to diabetic complications? Diabetes Obes Metab 2007;9:233–45.

    Article  PubMed  CAS  Google Scholar 

  106. Negrean M, Stirban A, Horstmann T, et al. Food advanced glycation endproducts (AGE) acutely induce vascular dysfunction in patients with type 2 diabetes mellitus, an effect reduced by benfotiamine. Diabetologia 2005;48:Suppl 1:A415.

    Google Scholar 

  107. Pouillart P, Mauprivez H, Ait-Ameur L, et al. Strategy for the study of the health impact of dietary Maillard products in clinical studies: the example of the ICARE clinical study on healthy adults. Ann N Y Acad Sci 2008;1126:173–6.

    Article  PubMed  CAS  Google Scholar 

  108. Uribarri J, Peppa M, Cai W, et al. Dietary glycotoxins correlate with circulating advanced glycation end product levels in renal failure patients. Am J Kidney Dis 2003;42:532–8.

    Article  PubMed  CAS  Google Scholar 

  109. Uribarri J, Cai W, Sandu O, et al. Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann N Y Acad Sci 2005;1043:461–6.

    Article  PubMed  CAS  Google Scholar 

  110. Ahmed N, Babaei-Jadidi R, Howell SK, et al. Glycated and oxidized protein degradation products are indicators of fasting and postprandial hyperglycemia in diabetes. Diabetes Care 2005;28:2465–71.

    Article  PubMed  CAS  Google Scholar 

  111. Uribarri J, Peppa M, Cai W, et al. Restriction of dietary glycotoxins reduces excessive advanced glycation end products in renal failure patients. J Am Soc Nephrol 2003;14:728–31.

    Article  PubMed  CAS  Google Scholar 

  112. Cai W, He JC, Zhu L, et al. High levels of dietary advanced glycation end products transform low-density lipoprotein into a potent redox-sensitive mitogen-activated protein kinase stimulant in diabetic patients. Circulation 2004;110:285–91.

    Article  PubMed  CAS  Google Scholar 

  113. Stirban A, Negrean M, Stratmann B, et al. Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. Diabetes Care 2006;29:2064–71.

    Article  PubMed  CAS  Google Scholar 

  114. Stirban A, Negrean M, Stratmann B, et al. Adiponectin decreases postprandially following a heat-processed meal in individuals with type 2 diabetes: an effect prevented by benfotiamine and cooking method. Diabetes Care 2007;30:2514–6.

    Article  PubMed  Google Scholar 

  115. Stirban A, Negrean M, Götting C, et al. Leptin decreases postprandially in people with type 2 diabetes — an effect reduced by the cooking method. Horm Metab Res 2008;40:896–900.

    Article  PubMed  CAS  Google Scholar 

  116. Uribarri J, Stirban A, Sander D, et al. Single oral challenge by advanced glycation end products acutely impairs endothelial function in diabetic and nondiabetic subjects. Diabetes Care 2007;30:2579–82.

    Article  PubMed  CAS  Google Scholar 

  117. Tanaka Y, Uchino H, Shimizu T, et al. Effect of metformin on advanced glycation endproduct formation and peripheral nerve function in streptozotocin-induced diabetic rats. Eur J Pharmacol 1999;376:17–22.

    Article  PubMed  CAS  Google Scholar 

  118. Nakamura K, Yamagishi S, Nakamura Y, et al. Telmisartan inhibits expression of a receptor for advanced glycation end products (RAGE) in angiotensin-II-exposed endothelial cells and decreases serum levels of soluble RAGE in patients with essential hypertension. Microvasc Res 2005;70:137–41.

    Article  PubMed  CAS  Google Scholar 

  119. Hammes HP, Du X, Edelstein D, et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 2003;9:294–9.

    Article  PubMed  CAS  Google Scholar 

  120. Miyata T, Iida Y, Horie K, et al. Pathophysiology of advanced glycation end-products in renal failure. Nephrol Dial Transplant 1996;11:Suppl 5:27–30.

    PubMed  CAS  Google Scholar 

  121. Tan KC, Chow WS, Lam JC, et al. Advanced glycation endproducts in nondiabetic patients with obstructive sleep apnea. Sleep 2006;29:329–33.

    PubMed  Google Scholar 

  122. Friedman M. Biological effects of Maillard browning products that may affect acrylamide safety in food: biological effects of Maillard products. Adv Exp Med Biol 2005;561:135–56.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alin Stirban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stirban, A. Die Bedeutung von AGEs und ROS bei Atherosklerose. Herz 35, 170–180 (2010). https://doi.org/10.1007/s00059-010-3338-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-010-3338-y

Schlüsselwörter:

Key Words:

Navigation