Skip to main content
Log in

Intracolony vibroacoustic communication in social insects

  • Review Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Vibrations and sounds, collectively called vibroacoustics, play significant roles in intracolony communication in termites, social wasps, ants, and social bees. Modalities of vibroacoustic signal production include stridulation, gross body movements, wing movements, high-frequency muscle contractions without wing movements, and scraping mandibles or tapping body parts on resonant substrates. Vibroacoustic signals are perceived primarily via Johnston’s organs in the antennae and subgenual organs in the legs. Substrate vibrations predominate as vibroacoustic modalities, with only honey bees having been shown to be able to hear airborne sound. Vibroacoustic messages include alarm, recruitment, colony activation, larval provisioning cues, and food resource assessment. This review describes the modalities and their behavioral contexts rather than electrophysiological aspects, therefore placing emphasis on the adaptive roles of vibroacoustic communication. Although much vibroacoustics research has been done, numerous opportunities exist for continuations and new directions in vibroacoustics research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agmon I., Plotkin M., Ermakov N.Y., Barkay Z. and Ishay J.S. 2006. Antennal and cephalic organelles in the social wasp Paravespula germanica (Hymenoptera, Vespinae): form and possible function. Microsc. Res. Tech. 69: 46-52

    Google Scholar 

  • Aguilar I. and Briceño D. 2002. Sounds in Melipona costaricensis (Apidae: Meliponini): effect of sugar concentration and nectar source distance. Apidologie 33: 375-388

    Google Scholar 

  • Ai H., Nishino H. and Itoh T. 2007. Topographic organization of sensory afferents of Johnston’s organ in the honeybee brain. J. Comp. Neurol. 502: 1030-1046

    Google Scholar 

  • Alexander R.D. 1974. The evolution of social behavior. Annu. Rev. Ecol. Syst. 5: 325-383

    Google Scholar 

  • Allen M.D. 1959. The occurrence and possible significance of the “shaking” of honeybee queens by the workers. Anim. Behav. 7: 66-69

    Google Scholar 

  • Barbero F., Thomas J.A., Bonelli S., Balletto E. and Schönrogge K. 2009. Queen ants make distinctive sounds that are mimicked by a butterfly social parasite. Science 323: 782-785

    Google Scholar 

  • Baroni Urbani C., Buser M.W. and Schillinger E. 1988. Substrate vibration during recruitment in ant social organization. Insect. Soc. 35: 241-250

    Google Scholar 

  • Barth F.G., Hrncir M. and Jarau S. 2008. Signals and cues in the recruitment behavior of stingless bees (Meliponini). J. Comp. Physiol. A 194: 313-327

    Google Scholar 

  • Boucher M. and Schneider S.S. 2009. Communication signals used in worker-drone interactions in the honeybee, Apis mellifera. Anim. Behav. 78: 247-254

    Google Scholar 

  • Brennan B.J. 2007. Abdominal wagging in the social paper wasp Polistes dominulus: behavior and substrate vibrations. Ethology 113: 692-702

    Google Scholar 

  • Brillet C., Tian-Chansky S.S. and Le Conte Y. 1999. Abdominal waggings and variation of their rate of occurrence in the social wasp, Polistes dominulus Christ. I. quantitative analysis. J. Insect Behav. 12: 665-686

    Google Scholar 

  • Brockmann A. and Robinson G.E. 2007. Central projections of sensory systems involved in honey bee dance language communication. Brain Behav. Evol. 70: 125-136

    Google Scholar 

  • Bruinsma O., Kruijt J.P. and van Dusseldorp W. 1981. Delay of emergence of honey bee queens in response to tooting sounds. Proc. K. Ned. Akad. Wet. C 84: 381-387

    Google Scholar 

  • Cao T.T., Hyland K.M., Malechuk A., Lewis L.A. and Schneider S.S. 2007. The influence of the vibration signal on worker interactions with the nest and nest mates in established and newly founded colonies of the honey bee, Apis mellifera. Insect. Soc. 54: 144-149

    Google Scholar 

  • Casacci L.P., Thomas J.A., Sala M., Treanor D., Bonelli S., Balletto E. and Schönrogge K. 2013. Ant pupae employ acoustics to communicate social status in their colony’s hierarchy. Curr. Biol. 23: 323-327

    Google Scholar 

  • Chapman R.F. 1998. The Insects - Structure and Function, 4 th edition. Cambridge Univ. Press, Cambridge

  • Chiu Y-K., Mankin R.W. and Lin C–C. 2011. Context-dependent stridulatory responses of Leptogenys kitteli (Hymenoptera: Formicidae) to social, prey, and disturbance stimuli. Ann. Entomol. Soc. Am. 104: 1012-1020

    Google Scholar 

  • Cocroft R.B. 2011. The public world of insect vibrational communication. Mol. Ecol. 20: 2041-2043

    Google Scholar 

  • Cocroft R.B. and Rodríguez R.L. 2005. The behavioral ecology of insect vibrational communication. Bioscience 55: 323-334

    Google Scholar 

  • Connétable S., Robert A., Bouffault F. and Bordereau C. 1999. Vibratory alarm signals in two sympatric higher termite species: Pseudacanthotermes spiniger and P. militaris (Termitidae, Macrotermitinae). J. Insect Behav. 12: 329-342

    Google Scholar 

  • Cummings D.L.D., Gamboa G.J. and Harding B.J. 1999. Lateral vibrations by social wasps signal larvae to withold salivary secretions (Polistes fuscatus, Hymenoptera: Vespidae). J. Insect Behav. 12: 465-473

    Google Scholar 

  • Dawkins R. 1982. The Extended Phenotype: The Gene as the Unit of Selection. Oxford Univ Press, Oxford

  • DeVries P.J. and Cocroft R.B. 1993. Comparison of acoustical signals in Maculinea butterfly caterpillars and their obligate host Myrmica ants. Biol. J. Linn. Soc. 49: 229-238

    Google Scholar 

  • Donahoe K., Lewis L.A. and Schneider S.S. 2003. The role of the vibration signal in the house-hunting process of honey bee (Apis mellifera) swarms. Behav. Ecol. Sociobiol. 54: 593-600

    Google Scholar 

  • Dornhaus A. and Chittka L. 2001. Food alert in bumblebees (Bombus terrestris): possible mechanisms and evolutionary implications. Behav. Ecol. Sociobiol. 50: 570-576

    Google Scholar 

  • Downing H.A. and Jeanne R.L. 1985. Communication of status in the social wasp Polistes fuscatus. Z. Tierpsychol. 67: 78-96

    Google Scholar 

  • Dreller C. and Kirchner W.H. 1993. Hearing in honeybees: localization of the auditory sense organ. J. Comp. Physiol. A 173: 275-279

    Google Scholar 

  • Duong N. and Schneider S.S. 2008. Intra-patriline variability in the performance of the vibration signal and waggle dance in the honey bee, Apis mellifera. Ethology 114: 646-655

    Google Scholar 

  • Ehmer B. and Gronenberg W. 1997. Proprioceptors and fast antennal reflexes in the ant Odontomachus (Formicidae, Ponerinae). Cell Tissue Res. 290: 153-165

    Google Scholar 

  • Eickwort K. 1969. Separation of the castes of Polistes exclamans and notes on its biology (Hym.: Vespidae). Insect. Soc. 16: 67-72

    Google Scholar 

  • Evans T.A., Inta R., Lai J.C.S., Prueger S., Foo N.W., Fu E.W.and Lenz M. 2009. Termites eavesdrop to avoid competitors. Proc. R. Soc. B 276: 4035-4041

  • Evans T.A., Inta R. and Lenz M. 2007. Foraging vibration signals attract foragers and identify food size in the drywood termite, Cryptotermes secundus. Insect. Soc. 54: 374-382

    Google Scholar 

  • Evans T.A., Lai J.C.S., Toledano E., McDowall L., Rakotonarivo S. and Lenz M. 2005. Termites assess wood size by using vibration signals. Proc. Natl Acad. Sci. USA 102: 3732-3737

    Google Scholar 

  • Ezenwa V.O., Henshaw M.T., Queller D.C. and Strassmann J.E. 1998. Patterns of buzz running, a pre-swarming behavior, in the Neotropical wasp Parachartergus colobopterus. Insect. Soc. 45: 445-456

    Google Scholar 

  • Fabre C.C.G., Hedwig B., Conduit G., Lawrence P.A., Goodwin S.F. and Casal J. 2012. Substrate-borne vibratory communication during courtship in Drosophila melanogaster. Curr. Biol. 22: 2180-2185

    Google Scholar 

  • Ferreira R.S., Poteaux C., Delabie J.H.C., Fresneau D. and Rybak F. 2010. Stridulations reveal cryptic speciation in Neotropical sympatric ants. PLoS One 5: e15363

    Google Scholar 

  • Field L.H. and Matheson T. 1998. Chordotonal organs of insects. In: Advances in Insect Physiology, vol. 27 (Evans P.D., Ed) Elsevier, San Diego, pp 1-228

  • Fletcher D.J.C. 1978a. Influence of vibratory dances by worker honeybees on activity of virgin queens. J. Apic. Res. 17: 3-13

  • Fletcher D.J.C. 1978b. Vibration of queen cells by worker honeybees and its relation to issue of swarms with virgin queens. J. Apic. Res. 17: 14-26

  • Forsyth A.B. 1981. Swarming activity of polybiine social wasps (Hymenoptera: Vespidae: Polybiini). Biotropica 13: 93-99

    Google Scholar 

  • Fuchs S. 1976a. An informational analysis of the alarm communication by drumming behavior in nests of carpenter ants (Camponotus, Formicidae, Hymenoptera). Behav. Ecol. Sociobiol. 1: 315-336

  • Fuchs S. 1976b. The response to vibrations of the substrate and reactions to the specific drumming in colonies of carpenter ants (Camponotus, Formicidae, Hymenoptera). Behav. Ecol. Sociobiol. 1: 155-184

  • Gamboa G.J. and Dew H.E. 1981. Intracolonial communication by body oscillations in the paper wasp, Polistes metricus. Insect. Soc. 28: 13-26

    Google Scholar 

  • Gogala M. 1985. Vibrational communication in insects (biophysical and behavioural aspects). In: Acoustic and Vibrational Communication in Insects (Kalmring K. and Eisner N., Eds). Verlag Paul Parey, Berlin, pp 117-126

  • Gould S.J. and Vrba E.S. 1982. Exaptation - a missing term in the science of form. Paleobiology 8: 4-15

    Google Scholar 

  • Grasso D.A., Mori A., le Moli F., Giovannotti M. and Fanfani A. 1998. The stridulatory organ of four Messor ant species (Hymenoptera, Formicidae). Ital. J. Zool. 65: 167-174

    Google Scholar 

  • Gronenberg W., Hölldobler B. and Alpert G.D. 1998. Jaws that snap: control of mandible movements in the ant Mystrium. J. Insect Physiol. 44: 241-253

    Google Scholar 

  • Gronenberg W. and Peeters C. 1993. Central projections of the sensory hairs on the gemma of the ant Diacamma: substrate for behavioural modulation? Cell Tissue Res. 273: 401-415

    Google Scholar 

  • Gronenberg W. and Tautz J. 1994. The sensory basis for the trap-jaw mechanism in the ant Odontomachus bauri. J. Comp. Physiol. A 174: 49-60

    Google Scholar 

  • Grooters H.J. 1987. Influences of queen piping and worker behaviour on the timing of emergence of honey bee queens. Insect. Soc. 34: 181-193

    Google Scholar 

  • Han C.S. and Jablonski P.G. 2010. Male water striders attract predators to intimidate females into copulation. Nat. Commun. 1: 1-6

    Google Scholar 

  • Harding B.J. and Gamboa G.J. 1998. The sequential relationship of body oscillations in the paper wasp, Polistes fuscatus (Hymenoptera: Vespidae). Great Lakes Entomol. 31: 191-194

    Google Scholar 

  • Harvey P.H. and Pagel M.D. 1991. The Comparative Method in Evolutionary Biology. Oxford Univ Press, New York

  • Hebets E.A. and Papaj D.R. 2005. Complex signal function: developing a framework of testable hypotheses. Behav. Ecol. Sociobiol. 57: 197-214

    Google Scholar 

  • Hertel H., Hanspach A. and Plarre R. 2011. Differences in alarm responses in drywood and subterranean termites (Isoptera: Kalotermitidae and Rhinotermitidae) to physical stimuli. J. Insect Behav. 24: 106-115

    Google Scholar 

  • Hickling R. and Brown R.L. 2000. Analysis of acoustic communication by ants. J. Acoust. Soc. Am. 108: 1920-1929

    Google Scholar 

  • Hill P.S.M. 2001. Vibration and animal communication: a review. Am. Zool. 41: 1135-1142

    Google Scholar 

  • Hill P.S.M. 2009. How do animals use substrate-borne vibrations as an information source? Naturwissenschaften 96: 1355-1371

    Google Scholar 

  • Hölldobler B. 1971. Communication behavior in Camponotus socius (Hym. Formicidae). Z. Vgl. Physiol. 75: 123-142

  • Hölldobler B. 1977. Communication in social Hymenoptera. In: How Animals Communicate (Sebok T.A., Ed). Indiana Univ. Press, Bloomington, pp 418-471

  • Hölldobler B. 1999. Multimodal signals in ant communication. J. Comp. Physiol. A 184: 129-141

    Google Scholar 

  • Hölldobler B. and Maschwitz U. 1965. Der Hochzeitsschwarm der Rossameise Camponotus herculeanus L. (Hym. Formicidae). Z. Vgl. Physiol. 50: 551-568

  • Hölldobler B. and Wilson E.O. 1990. The Ants. Belknap Press, Cambridge

  • Hölldobler B., Braun U., Gronenberg W., Kirchner W.H. and Peeters C. 1994. Trail communication in the ant Megaponera foetens (Fabr.) (Formicidae, Ponerinae). J. Insect Physiol. 40: 585-593

    Google Scholar 

  • Hölldobler B. and Wilson E.O. 2009. The Superorganism. W.W. Norton, New York.

  • Horridge G.A. 1965. Arthropoda: receptors other than eyes. In: Structure and Function in the Nervous Systems of Invertebrates, vol. 2 (Bullock T.H. and Horridge G.A., Eds). W.H. Freeman, San Francisco, pp 1005-1062

  • Howse P.E. 1962. The perception of vibration by the subgenual organ in Zootermopsis angusticollis Emerson and Periplaneta americana L. Cell Mol. Life Sci. 18: 457-458

  • Howse P.E. 1964. The significance of the sound produced by the termite Zootermopsis angusticollis. Anim. Behav. 12: 284-300

    Google Scholar 

  • Howse P.E. 1965. The structure of the subgenual organ and certain other mechanoreceptors of the termite Zootermopsis angusticollis (Hagen). Proc. R. Entomol. Soc. A 40: 137-146

    Google Scholar 

  • Hoy R.R. 1998. Acute as a bug’s ear: an informal discussion of hearing in insects. In: Comparative Hearing: Insects (Hoy R.R., Popper A.N. and Fay R.F., Eds). Springer, New York, pp 1-17

  • Hrncir M., Jarau S., Zucchi R. and Barth F.G. 2000. Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata II. possible mechanisms of communication. Apidologie 31: 93-113

    Google Scholar 

  • Hrncir M., Jarau S., Zucchi R. and Barth F.G. 2004a. Thorax vibrations of a stingless bee (Melipona seminigra). I. no influence of visual flow. J. Comp. Physiol. A 190: 539-548

  • Hrncir M., Jarau S., Zucchi R. and Barth F.G. 2004b. Thorax vibrations of a stingless bee (Melipona seminigra). II. dependence on sugar concentration. J. Comp. Physiol. A 190: 549-560

  • Hrncir M., Barth F.G. and Tautz J. 2006a. Vibratory and airborne-sound signals in bee communication (Hymenoptera). In: Insect Sounds and Communication (Drosopoulos S. and Claridge M.F., Eds). CRC Press, Boca Raton, pp 421-436

  • Hrncir M., Schmidt V., Schorkopf D., Jarau S., Zucchi R. and Barth F 2006b. Vibrating the food receivers: a direct way of signal transmission in stingless bees (Melipona seminigra). J. Comp. Physiol. A 192: 879-887

  • Hrncir M., Gravel A-I., Schorkopf D.L.P., Schmidt V.M., Zucchi R. and Barth F.G. 2008a. Thoracic vibrations in stingless bees (Melipona seminigra): resonances of the thorax influence vibrations associated with flight but not those associated with sound production. J. Exp. Biol. 211: 678-685

  • Hrncir M., Schorkopf D.L.P., Schmidt V.M., Zucchi R. and Barth F.G. 2008b. The sound field generated by tethered stingless bees (Melipona scutellaris): inferences on its potential as a recruitment mechanism inside the hive. J. Exp. Biol. 211: 686-698

  • Hunt J.H. 1988. Lobe erection behavior and its possible social role in larvae of Mischocyttarus paper wasps. J. Insect Behav. 1: 379-386

    Google Scholar 

  • Hunt J.H. 2012. A conceptual model for the origin of worker behaviour and adaptation of eusociality. J. Evol. Biol. 25: 1-19

    Google Scholar 

  • Hunt J.H. and Amdam G.V. 2005. Bivoltinism as an antecedent to eusociality in the paper wasp genus PolistesScience 308: 264-267

    Google Scholar 

  • Hunt J.H., Kensinger B.A., Kossuth J., Henshaw M.T., Norberg K., Wolschin F. and Amdam G.V. 2007. From casteless to castes - a diapause pathway underlies the gyne phenotype in Polistes paper wasps. Proc. Natl Acad. Sci. USA 104: 14020-14025

    Google Scholar 

  • Hunt J.H., Wolschin F., Henshaw M.T., Newman T.C., Toth A.L. and Amdam G.V. 2010. Differential gene expression and protein abundance evince ontogenetic bias toward castes in a primitively eusocial wasp. PLoS One 5: e10674

    Google Scholar 

  • Ishay J., Motro A., Gitter S. and Brown M.B. 1974. Rhythms in acoustical communication by the Oriental hornet Vespa orientalis. Anim. Behav. 22: 741-744

    Google Scholar 

  • Ishay J. and Schwartz A. 1973. Acoustical communication between the members of the Oriental hornet (Vespa orientalis) colony. J. Acoust. Soc. Am. 53: 640-649

    Google Scholar 

  • Ishay J. and Schwarz J. 1965. On the nature of the sounds produced within the nest of the Oriental hornet, Vespa orientalis F. Insect. Soc. 12: 383-388

    Google Scholar 

  • Ishikawa Y., Koshikawa S. and Miura T. 2007. Differences in mechanosensory hairs among castes of the damp-wood termite Hodotermopsis sjostedti (Isoptera: Termopsidae). Sociobiology 50: 895-907

    Google Scholar 

  • Jeanne R.L. 1975. Behavior during swarm movement in Stelopolybia areata (Hymenoptera: Vespidae). Psyche 82: 259-264

    Google Scholar 

  • Jeanne R.L. 2009. Vibrational signals in social wasps: a role in caste determination? In: Organization of Insect Societies (Gadau J. and Fewell J., Eds). Harvard Univ. Press, Cambridge, pp 241-263

  • Kettler R. and Leuthold R.H. 1995. Inter- and intraspecific alarm response in the termite Macrotermes subhyalinus (Rambur). Insect. Soc. 42: 145-156

    Google Scholar 

  • Kilpinen O. and Storm J. 1997. Biophysics of the subgenual organ of the honeybee, Apis mellifera. J. Comp. Physiol. A 181: 309-318

    Google Scholar 

  • King M.J., Buchman S.L. and Spangler H. 1996. Activity of asynchronous flight muscle from two bee families during sonication (buzzing). J. Exp. Biol. 199: 2317-2321

    Google Scholar 

  • Kirchner W.H. 1993. Acoustical communication in honeybees. Apidologie 24: 297-307

    Google Scholar 

  • Kirchner W.H. 1997. Acoustical communication in social insects. In: Orientation and Communication in Arthropods (Lehrer M., Ed). Birkhäuser Verlag, Basel, pp 273-300

  • Kirchner W.H., Broecker I. and Tautz J. 1994. Vibrational alarm communication in the damp-wood termite Zootermopsis nevadensis. Physiol. Entomol. 19: 187-190

    Google Scholar 

  • Kweskin M.P. 2004. Jigging in the fungus-growing ant Cyphomyrmex costatus: a response to collembolan garden invaders? Insect. Soc. 51: 158-162

    Google Scholar 

  • LaPolla J.S., Cover S.P. and Mueller U.G. 2002. Natural history of the mealybug-tending ant, Acropyga epedana, with descriptions of the male and queen castes. Trans. Am. Entomol. Soc. 128: 367-376

    Google Scholar 

  • Legendre F., Marting P.R. and Cocroft R.B. 2012. Competitive masking of vibrational signals during mate searching in a treehopper. Anim. Behav. 83: 361-368

    Google Scholar 

  • Lenz M. 1994. Food resources, colony growth and caste development in wood-feeding termites. In: Nourishment and Evolution in Insect Societies (Hunt J.H. and Nalepa C.A., Eds). Westview Press, Boulder, pp 159-209

  • Lewis L.A. and Schneider S.S. 2000. The modulation of worker behavior by the vibration signal during house hunting in swarms of the honeybee, Apis mellifera. Behav. Ecol. Sociobiol. 48: 154-164

    Google Scholar 

  • Lewis L.A., Schneider S.S. and DeGrandi-Hoffman G. 2002. Factors influencing the selection of recipients by workers performing vibration signals in colonies of the honeybee, Apis mellifera. Anim. Behav. 63: 361-367

    Google Scholar 

  • Markl H. 1965. Stridulation in leaf-cutting ants. Science 149: 1392-1393

    Google Scholar 

  • Markl H. 1967. Die Verständigung durch Stridulationssignale bei Blattschneiderameisen, I: die biologische Bedeutung der Stridulation. Z. Vgl. Physiol. 57: 299-330

    Google Scholar 

  • Markl H. 1973. The evolution of stridulatory communication in ants. In: Proc. 7 th Congr. IUSSI (London, 1973). pp 258-265

  • Markl H. 1983. Vibrational communication. In: Neuroethology and Behavioral Physiology (Huber F. and Markl H., Eds). Springer-Verlag, Heidelberg, pp 332-353

  • Markl H. and Hölldobler B. 1978. Recruitment and food-retrieving behavior in Novomessor (Formicidae, Hymenoptera). II: vibration signals. Behav. Ecol. Sociobiol. 4: 182-186

    Google Scholar 

  • Markl H., Hölldobler B. and Hölldobler T. 1977. Mating behavior and sound production in harvester ants (Pogonomyrmex, Formicidae). Insect. Soc. 24: 191-212

    Google Scholar 

  • Masson C. and Gabouriaut D. 1973. Ultrastructure de l’organe de Johnston de la fourmi Camponotus vagus Scop. (Hymenoptera, Formicidae). Z. Zellforch. Microsk. Anat. Histochem. 140: 39-75

    Google Scholar 

  • Masters W.M., Tautz J. Fletcher N.H. and Markl H. 1983. Body vibration and sound production in an insect (Atta sexdens) without specialized radiating structures. J. Comp. Physiol. A 150: 239-249

    Google Scholar 

  • Menzel J.G. and Tautz J. 1994. Functional morphology of the subgenual organ of the carpenter ant. Tissue Cell. 26: 735-746

    Google Scholar 

  • Menzel T. and Marquess J. 2008. The substrate vibration generating behavior of Aphaenogaster carolinensis (Hymenoptera: Formicidae). J. Insect Behav. 21: 82-88

    Google Scholar 

  • Meyhöfer R. and Casas J. 1999. Vibratory stimuli in host location by parasitic wasps. J. Insect Physiol. 45: 967-971

    Google Scholar 

  • Michelsen A. 2003. Signals and flexibility in the dance communication of honeybees. J. Comp. Physiol. A 189: 165-174

    Google Scholar 

  • Michelsen A., Kirchner W.H. and Lindauer M. 1986a. Sound and vibrational signals in the dance language of the honeybee, Apis mellifera. Behav. Ecol. Sociobiol. 18: 207-212

  • Michelsen A., Kirchner W.H., Andersen B.B. and Lindauer M. 1986b. The tooting and quacking vibration signals of honeybee queens: a quantitative analysis. J. Comp. Physiol. A 158: 605-611

  • Michelsen A., Andersen B.B., Storm J., Kirchner W.H. and Lindauer M. 1992. How honeybees perceive communication dances, studied by means of a mechanical model. Behav. Ecol. Sociobiol. 30: 143-150

    Google Scholar 

  • Mill A.E. 1984. Predation by the ponerine ant Pachycondyla commutata on termites of the genus Syntermes in Amazonian rain forest. J. Nat. Hist. 18: 405-410

    Google Scholar 

  • Nadrowski B., Effertz T., Pingkalai R.S. and Göpfert M.C. 2011. Antennal hearing in insects - new findings, new questions. Hear. Res. 273: 7-13

    Google Scholar 

  • Nascimento F.S., Hrncir M., Tolfiski A. and Zucchi R. 2005. Scraping sounds produced by a social wasp (Asteloeca ujhelyii, Hymenoptera: Vespidae). Ethology 111: 1116-1125

  • Nieh J.C. 1993. The stop signal of honey bees: reconsidering its message. Behav. Ecol. Sociobiol. 33: 51-56

    Google Scholar 

  • Nieh J.C. 2004. Recruitment communication in stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie 35: 159-182

    Google Scholar 

  • Nieh J.C., Contrera F.A.L., Rangel J. and Imperatriz-Fonseca V.L. 2003. Effect of food location and quality on recruitment sounds and success in two stingless bees, Melipona mandacaia and Melipona bicolor. Behav. Ecol. Sociobiol. 55: 87-94

    Google Scholar 

  • Nieh J.C. and Roubik D.W. 1998. Potential mechanisms for the communication of height and distance by the stingless bee, Melipona panamica. Behav. Ecol. Sociobiol. 43: 387-399

    Google Scholar 

  • Nieh J.C. and Tautz J. 2000. Behaviour-locked signal analysis reveals weak 200-300 Hz comb vibrations during the honeybee waggle dance. J. Exp. Biol. 203: 1573-1579

    Google Scholar 

  • Ohtani T. and Kamada T. 1980. ‘Worker piping’: the piping sounds produced by laying and guarding worker honeybees. J. Apic. Res. 19: 154-163

    Google Scholar 

  • Painter-Kurt S. and Schneider S.S. 1998. Age and behavior of honey bees, Apis mellifera (Hymenoptera: Apidae), that perform vibration signals on workers. Ethology 104: 457-473

    Google Scholar 

  • Partan S.R. 2004. Multisensory animal communication. In: The Handbook of Multisensory Processes (Calvert G., Spence C. and Stein B.E., Eds). MIT Press, Cambridge. pp 225-240

  • Partan S.R. and Marler P. 1999. Communication goes multimodal. Science 283: 1272-1273

    Google Scholar 

  • Partan S.R. and Marler P. 2005. Issues in the classification of multimodal communication signals. Amer. Nat. 166: 231-245

    Google Scholar 

  • Pastor K.A. and Seeley T.D. 2005. The brief piping signal of the honey bee: begging call or stop signal? Ethology 111: 775-784

    Google Scholar 

  • Pavan G., Priano M., De Carli P., Fanfani A. and Giovannotti M. 1997. Stridulatory organ and ultrasonic emission in certain species of ponerine ants (genus: Ectatomma and Pachycondyla, Hymenoptera, Formicidae). Bioacoustics 8: 209-221

    Google Scholar 

  • Pierce A.L., Lewis L.A. and Schneider S.S. 2007. The use of the vibration signal and worker piping to influence queen behavior during swarming in honey bees, Apis mellifera. Ethology 113: 267-275

    Google Scholar 

  • Pratt S.C., Kühnholz S., Seeley T.D. and Weidenmüller A. 1996. Worker piping associated with foraging in undisturbed queenright colonies of honey bees. Apidologie 27: 13-20

    Google Scholar 

  • Pratte M. and Jeanne R.L. 1984. Antennal drumming behavior in Polistes wasps (Hymenoptera: Vespidae). Z. Tierpsychol. 66: 177-188

    Google Scholar 

  • Rauth S.J. and Vinson S.B. 2006. Colony wide behavioral contexts of stridulation in imported fire ants (Solenopsis invicta Buren). J. Insect Behav. 19: 293-304

    Google Scholar 

  • Richard F.-J. and Hunt J.H. 2013. Intracolony chemical communication in social insects. Insect. Soc. 60: 275-291

    Google Scholar 

  • Roces F. and Tautz J. 2001. Ants are deaf. J. Acoust. Soc. Am. 109: 3080-3082

    Google Scholar 

  • Roces F., Tautz J. and Hölldobler B. 1993. Stridulation in leaf-cutting ants: short-range recruitment through plant-borne vibrations. Naturwissenschaften 89: 521-524

    Google Scholar 

  • Röhrig A., Kirchner W.H. and Leuthold R.H. 1999. Vibrational alarm communication in the African fungus-growing termite genus Macrotermes (Isoptera, Termitidae). Insect. Soc. 46: 71-77

  • Rohrseitz K. and Kilpinen O. 1997. Vibration transmission characteristics of the legs of freely standing honeybees. Zoology 100: 80-84

    Google Scholar 

  • Rosengaus R.B., Jordan C., Lefebvre M.L. and Traniello J.F.A. 1999. Pathogen alarm behavior in a termite: a new form of communication in social insects. Naturwissenschaften 86: 544-548

    Google Scholar 

  • Ruiz E., Martínez M.H., Martínez D.M. and Hernández J.M. 2006. Morphological study of the stridulatory organ in two species Crematogaster genus: Crematogaster scutellaris (Olivier 1792) and Crematogaster auberti (Emery 1869) (Hymenoptera: Formicidae). Ann. Soc. Entomol. Fr. 42: 99-105

  • Sandeman D.C., Tautz J. and Lindauer M. 1996. Transmission of vibration across honeycombs and its detection by bee leg receptors. J. Exp. Biol. 199: 2585-2594

    Google Scholar 

  • Santos G.M.T., Alves A.A. and Mendonça F.A.S. 2007. Morfologia de estruturas sensoriais em pernas e antenas de Agelaia pallipes (Olivier), Polybia paulista (Ihering) e Mischocyttarus cassununga (Ihering) (Hymenoptera: Vespidae). Neotrop. Entomol. 36: 868-873

  • Savoyard J.L., Gamboa G.J., Cummings D.L.D. and Foster R.L. 1998. The communicative meaning of body oscillations in the social wasp, Polistes fuscatus (Hymenoptera, Vespidae). Insect. Soc. 45: 215-230

    Google Scholar 

  • Schaudinischky L. and Ishay J. 1968. On the nature of the sounds produced within the nest of the Oriental hornet Vespa orientalis F. (Hymenoptera). J. Acoust. Soc. Am. 44: 1290-1301

  • Scheiner R., Schnitt S. and Erber J. 2005. The functions of antennal mechanoreceptors and antennal joints in tactile discrimination of the honeybee (Apis mellifera L.). J. Comp. Physiol. A 191: 857-864

    Google Scholar 

  • Schillinger E. and Baroni Urbani C. 1985. Morphologie de l’organe de stridulation et sonogrammes comparés chez les ouvrières de deux espèces de fourmis moissonneuses du genre Messor (Hymenoptera, Formicidae). Bull. Soc. Vaud. Sci. Nat. 77: 377-384

  • Schmidt V.M., Hrncir M., Schorkopf D.L., Mateús S., Zucchi R. and Barth F.G. 2008. Food profitability affects intranidal recruitment behavior in the stingless bee Nannotrigona testaceicornis. Apidologie 39: 260-272

    Google Scholar 

  • Schneider P. 1975. Versuche zur Erzeugung des Verteidigungstones bei Hummeln. Zool. Jahrb. Physiol. 79: 111-127

    Google Scholar 

  • Schneider S.S. 1987. The modulation of worker activity by the vibration dance of the honeybee, Apis mellifera. Ethology 74: 211-218

    Google Scholar 

  • Schneider S.S. 1991. Modulation of queen activity by the vibration dance in swarming colonies of the African honey-bee, Apis mellifera scutellata (Hymenoptera, Apidae). J. Kansas Entomol. Soc. 64: 269-278

  • Schneider S.S. and Lewis L.A. 2004. The vibration signal, modulatory communication and the organization of labor in honey bees, Apis mellifera. Apidologie 35: 117-131

    Google Scholar 

  • Schneider S.S., Painter-Kurt S. and DeGrandi-Hoffman G. 2001. The role of the vibration signal during queen competition in colonies of the honeybee, Apis mellifera. Anim. Behav. 61: 1173-1180

    Google Scholar 

  • Seeley T.D. 1992. The tremble dance of the honey bee: message and meanings. Behav. Ecol. Sociobiol. 31: 375-383

    Google Scholar 

  • Seeley T.D. 1997. Honey bee colonies are group-level adaptive units. Am. Nat. 150: S22-S41

  • Seeley T.D., Kühnholz S. and Weidenmüller A. 1996. The honey bee’s tremble dance stimulates additional bees to function as nectar receivers. Behav. Ecol. Sociobiol. 39: 419-427

    Google Scholar 

  • Seeley T.D. and Tautz J. 2001. Worker piping in honey bee swarms and its role in preparing for liftoff. J. Comp. Physiol. A 187: 667-676

    Google Scholar 

  • Simpson J. 1964. The mechanism of honey-bee queen piping. Insect. Soc. 48: 277-282

    Google Scholar 

  • Slone J.D., Stout T.L., Huang Z.Y. and Schneider S.S. 2012. The influence of drone physical condition on the likelihood of receiving vibration signals from worker honey bees. Insect. Soc. 59: 101-107

    Google Scholar 

  • Spangler H.G. 1967. Ant stridulations and their synchronization with abdominal movement. Science 155: 1687-1689

    Google Scholar 

  • Spangler H.G. 1974. The transmission of ant stridulations through soil. Ann. Entomol. Soc. Am. 67: 458-460

    Google Scholar 

  • Stewart K.W. 1997. Insect life: vibrational communication in insects. Am. Entomol. 43: 81-91

    Google Scholar 

  • Stout T.L., Slone J.D. and Schneider S.S. 2011. Age and behavior of honey bee workers, Apis mellifera, that interact with drones. Ethology 117: 459-468

  • Strassmann J.E. 1981. Parasitoids predators and group size in the paper wasp, Polistes exclamans. Ecology 62: 1225-1233

    Google Scholar 

  • Stuart A.M. 1963. Studies in the communication of alarm in the termite Zootermopsis nevadeensis (Hagen) Isoptera. Physiol. Zool. 36: 69-84

    Google Scholar 

  • Suryanarayanan S. and Jeanne R.L. 2008. Antennal drumming, trophallaxis, and colony development in the social wasp Polistes fuscatus (Hymenoptera: Vespida). Ethology 114: 1201-1209

    Google Scholar 

  • Suryanarayanan S., Hantschel A.E., Torres C.G. and Jeanne R.L. 2011a. Changes in the temporal pattern of antennal drumming behavior across the Polistes fuscatus colony cycle (Hymenoptera, Vespidae). Insect. Soc. 58: 97-106

  • Suryanarayanan S., Hermanson J.C. and Jeanne R.L. 2011b. A mechanical signal biases caste development in a social wasp. Curr. Biol. 21: 231-235

  • Tautz J. 1996. Honeybee waggle dance: recruitment success depends on the dance floor. J. Exp. Biol. 199: 1375-1381

    Google Scholar 

  • Tautz J., Rohrseitz K. and Sandeman D.C 1996. One-strided waggle dance in bees. Nature 382: 32

    Google Scholar 

  • Taylor R.W. 1978. Nothomyrmecia macrops: a living-fossil ant rediscovered. Science 201: 979-985

    Google Scholar 

  • Toth A.L., Varala K., Newman T.C., Miguez F.E., Hutchison S., Willoughby D., Simons J.F., Egholm M., Hunt J.H., Hudson M.E. and Robinson G.E. 2007. Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science 318: 441-444

    Google Scholar 

  • Toth A.L., Bilof K.B.J., Henshaw M.T., Hunt J.H. and Robinson G.E. 2009. Lipid stores, ovary development, and brain gene expression in Polistes females. Insect. Soc. 56: 77-84

    Google Scholar 

  • Travassos M.A. and Pierce N.E. 2000. Acoustics, context and function of vibrational signalling in a lycaenid butterfly-ant mutualism. Anim. Behav. 60: 13-26

    Google Scholar 

  • Tsujiuchi S., Sivan-Loukianova E., Ebrl D.F., Kitagawa Y. and Kadowaki T. 2007. Dynamic range compression in the honey bee auditory system toward waggle dance sound. PloS One 2: e234

    Google Scholar 

  • Vilhelmsen L., Isidoro N., Romani R., Basibuyuk H.H. and Quicke D.L.J. 2001. Host location and oviposition in a basal group of parasitic wasps: the subgenual organ, ovipositor apparatus and associated structures in the Orussidae (Hymenoptera, Insecta). Zoomorphology 121: 63-84

    Google Scholar 

  • Virant-Doberlet M. and Čokl A. 2004. Vibrational communication in insects. Neotrop. Entomol. 33: 121-134

    Google Scholar 

  • Visscher P.K., Shepardson J., McCart L. and Camazine S. 1999. Vibration signal modulates the behavior of house-hunting honey bees (Apis mellifera). Ethology 105: 759-769

    Google Scholar 

  • von Frisch K. 1967. The Dance Language and Orientation of Bees. Harvard Univ Press, Cambridge

  • Weber N.A. 1957. Fungus-growing ants and their fungi. Ecology 38: 480-494

    Google Scholar 

  • Weber N.A. 1972. Gardening Ants, The Attines. American Philosophical Society, Philadelphia

  • West-Eberhard M.J. 1982. The nature and evolution of swarming in tropical social wasps (Vespidae, Polistinae, Polybiini). In: Social Insects in the Tropics, Vol. 1 (Jaisson P., Ed). Université Paris-Nord, Paris, pp 97-128

  • West Eberhard M.J. 1969. The social biology of polistine wasps. Misc. Pub. Mus. Zool. Univ. Mich. 140: 1-101

    Google Scholar 

  • Yack J.E. 2004. The structure and function of auditory chordotonal organs in insects. Microsc. Res. Tech. 63: 315-337

    Google Scholar 

  • Yack J.E. and Fullard J.H. 1993. What is an insect ear? Ann. Entomol. Soc. Am. 86: 677-682

    Google Scholar 

Download references

Acknowledgments

We thank Gilles Bosquet for preparing Figure 1 and Adam Wilkins and two anonymous reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.-J. Richard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, J.H., Richard, FJ. Intracolony vibroacoustic communication in social insects. Insect. Soc. 60, 403–417 (2013). https://doi.org/10.1007/s00040-013-0311-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-013-0311-9

Keywords

Navigation