Skip to main content
Log in

Design and Analysis of Power Efficient Binary Content Addressable Memory (PEBCAM) Core Cells

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents the design and the analysis of power efficient binary content addressable memory (PEBCAM) core cells using the energy recovery principle of adiabatic logic. Generally, in the design of adiabatic CAM, the storage array is built by using a basic CAM cell, but the peripheral circuits are realized by using different adiabatic logic structures. In this paper, we propose the design of 3 novel power efficient binary content addressable memory core cells (PEBCAM core cells) using adiabatic logic, namely improved efficient charge recovery logic (IECRL) CAM core cell, positive feedback adiabatic logic (PFAL) CAM core cell and pass transistor adiabatic logic (PAL) CAM core cell. Memory arrays of size 4 \(\times \) 4 were designed and implemented using the proposed PEBCAM core cells in 45nm CMOS technology. It was found that recovery of dissipated power using adiabatic logic was better than the other CAM structures. The simulation results of the PEBCAM-IECRL CAM proved to be better with a power saving of 77.8% than the conventional adiabatic CAM structures. The circuits were designed using 45nm CMOS technology with a sinusoidal power clock of 1 V and other node voltages at 0.7 V using Cadence Virtuoso.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. G.J. Bala, J.R.P. Perinbam, A Novel low-power \(16 \times 16\) content addressable memory using PAL. 18th International Conference on VLSI Design, (2005), p. 791–794. doi:10.1109/ICVD.2005.27

  2. G.J. Bala, J.R.P. Perinbam, Adiabatic memories-a review, Electron Technol. Internet J., 37/38(2005/2006), 2, 1–4, Institute of Electron Technology, Warszawa (2006)

  3. M.-C. Chang, Y.-T. Kuo, Design of two-phase adiabatic content addressable memory, Commun. Syst. Information Technol., LNEE 100. Springer-Verlag, Berlin Heidelberg, pp. 577–583 (2011)

  4. B.L. Dokić, A review of energy efficient CMOS digital logic. Eng. Technol. Appl. Sci. Res. 3(6), 552–561 (2013)

    Google Scholar 

  5. A. Efthymiou, J.D. Garside, A CAM with a mixed serial–parallel comparison for use in low energy caches. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(3), 325–329 (2004)

    Article  Google Scholar 

  6. J. Hu, J. Fu, X. Luo, A single-phase adiabatic CAM using improved CAL circuits. Pacific–Asia Conference on Circuits, Communications, and Systems, PACCS ’09 (2009), p. 338–341. doi:10.1109/PACCS.2009.181

  7. T. Jaggi, R. Kumar, Performance analysis of positive feedback adiabatic logic for low power. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2(9), 4224–4230 (2013)

    Google Scholar 

  8. H. Jarollahi, V. Gripony, N. Onizawa, W. J. Gross, A low-power content-addressable-memory based on clustered-sparse-networks. Cornell University Library, 18 Feb 2013. arXiv:1302.4463v1 [cs.AR]

  9. J. Jiang, X. Sheng, J. Hu, An adiabatic content addressable memory based on dual threshold leakage reduction techniques, in ISIA 2010, CCIS 86, (Springer, Heidelberg, 2011), pp. 501–507, ed. by L.Qi

  10. D. Jothi, K. Malathy, A fully adiabatic power efficient content addressable memory using PFAL technique, in International Conference on Innovative and Trends in Engineering and Technology, (ICIETET 16), April 2016

  11. D. Jothi, L. Saranya, Power efficient CAM using adiabatic logic, in Second IEEE International Conference on Innovations in Information, Embedded and Communication Systems, March 2015

  12. D. Jothi, R. Sivakumar, A completely efficient charge recovery adiabatic logic content addressable memory, in International Conference on Computers, Communications, and Systems, (ICCCS 2015), November 2015

  13. V.S. Kanchana Bhaaskaran, J.P. Raina, Pre-resolve and sense adiabatic logic for 100 KHz to 500 MHz frequency classes. J. Circuits Syst. Comput. 21(05), 1250045 (2012)

    Article  Google Scholar 

  14. C. Kim, S.-M. Yoo, S.-M. Kiang, NMOS energy recovery logic, in Proceedings of the Ninth Great Lakes Symposium on VLSI, (Ypsilanti, 1999), pp. 310–313. doi:10.1109/GLSV.1999.757440

  15. S. Kim, M.C. Papaefthymiou, True single-phase adiabatic circuitry. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 9(1), 52–63 (2001). doi:10.1109/92.920819

    Article  Google Scholar 

  16. A. Kramer, J.S. Denker, B. Flower, J. Moroney, 2nd order adiabatic computation with 2N–2P and 2N–2N2P logic circuits, in Proceedings of the 1995 international symposium on Low power design, ISLPED ’95, AT&T Bell Laboratories, Holmdel, pp. 191–196, ACM New York, NY, USA 1995, ISBN:0-89791-744-8. doi:10.1145/224081.224115

  17. Lattice Semiconductor Corporation , Application Note AN8071 on Content Addressable Memory (CAM) Applications for ispXPLD Devices, July 2002

  18. H. Li, H.Y. Li, C. Chen, J.S. Wang, C.W. Yeh, An AND-type match-line scheme for high-performance energy-efficient content addressable memories. IEEE J. Solid State Circuits 41(5), 1108–1119 (2006)

    Article  Google Scholar 

  19. K. Locke, Parameterizable content-addressable memory, Application Note: Xilinx FPGAs, XAPP1151 (v1.0) March 1, (2011)

  20. X. Luo, W. Cheng, J. Hu, Complementary pass-transistor adiabatic logic with dual-threshold CMOS and gate-length biasing techniques for leakage reduction. Int. J. Digit. Content Technol. Appl. 7(5), 1260 (2013). doi:10.4156/jdcta.vol7.issue5.147

    Article  Google Scholar 

  21. H. Mahmoodi-Meimand, A. Afzali-Kusha, M. Nourani, Efficiency of adiabatic logic for low-power, low-noise VLSI in Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, vol. 1 (2000), pp. 324–327. doi:10.1109/MWSCAS.2000.951652

  22. D. Maksimovic, V.G. Oklobdžija, B. Nikolic, K.W. Current, Clocked CMOS adiabatic logic with integrated single-phase power-clock supply. IEEE Trans. VLSI Syst. 8(4), 460–463 (1998)

    Article  Google Scholar 

  23. S.K. Maurya, L.T. Clark, A dynamic longest prefix matching content addressable memory for IP routing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(6), 963–972 (2011)

    Article  Google Scholar 

  24. A. Mishra, A. Jaiswal, A. Jaiswal, A.K. Niketa, Design and analysis of conventional CMOS and energy efficient adiabatic logic for low-power VLSI application. Int. J. Eng. Adv. Technol. 3(12), 295–299 (2014)

  25. Y. Moon, D.K. Jeong, An efficient charge recovery logic circuit. IEEE J. Solid State Circuits 31, 514–522 (1996)

    Article  Google Scholar 

  26. S. Nakata, Recent progress in Adiabatic circuits, NTT Microsystem Integration Laboratories, 3–1 MorinosatoWakamiya, Atsugi, Kanagawa 243–0198. Japan Recent Patents on Electrical Engineering 2, 40–44 (2009)

  27. A. Natarajan, D. Jasinski, W. Burleson, R. Tessier, A hybrid adiabatic content addressable memory for ultra low-power applications (Electrical and Computer Engineering Department, University of Massachusetts Amherst, GLSVLSI’03, April 2003, Washington, 2003) ACM 1-58113-677-3/03/0006

  28. G.V. Oklobdzija, D. Maksimovi’c, F. Lin, Pass-transistor adiabatic logic using single power-clock supply. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 44(10), 842–846 (1997)

    Article  Google Scholar 

  29. K. Pagiamtzis, A. Sheikholeslami, Content-addressable memory (CAM) circuits and architectures: a tutorial and survey. IEEE J. Solid State Circuits 41, 712–727 (2006)

    Article  Google Scholar 

  30. S. Samanta, Adiabatic computing: a contemporary review, in International Conference on Computers and Devices for Communication, pp. 1–4, (2009)

  31. D. Shinghal, A. Saxena, A. Noor, Adiabatic logic circuits: a retrospect. MIT Int. J. Electron. Commun. Eng. 3(2), 108–114 (2013). ISSN No. 2230-7672 MIT Publications

    Google Scholar 

  32. M. Sowjanya, S. Abdul Malik, Efficiency of adiabatic logic for low-power VLSI using cascaded ECRL and PFAL inverter. Int. J. Eng. Res. Appl. 3(4), 1277–1280 (2013). ISSN: 2248–9622

    Google Scholar 

  33. P. Teichmann, Fundamentals of adiabatic logic, Lecture on Adiabatic Logic. Springer Series in Advanced Microelectronics . doi:10.1007/978-94-007-2345-0_2, Springer Science Business Media B.V. 2012

  34. M. Tiwari, J.K. Singh, Y. Vaidhya, Adiabatic positive feedback charge recovery logic for low power CMOS design. Int. J. Comput. Technol. Electron. Eng. 2(5), 19–24 (2012)

    Google Scholar 

  35. Z. Ullah, K. Ilgon, S. Baeg, Hybrid partitioned SRAM-based ternary content addressable memory. IEEE Trans. Circuits Syst. I 59(12), 2969–2979 (2012)

    Article  MathSciNet  Google Scholar 

  36. A. Vetuli, SDi Pascoli, L.M. Reyneri, Positive feedback in adiabatic logic. Electron. Lett. 32(20), 1867 (1996)

    Article  Google Scholar 

  37. D. J. Willingham, Asynchrobatic logic for low-power VLSI design, Ph.D. thesis, School of Electronics and Computer Science, University of Westminster, 2010

  38. D.J. Willingham, I. Kale, Using positive feedback adiabatic logic to implement reversible Toffoli Gates, in IEEE Formal Proceedings of 26th Norchip Conference 17–18 November 2008, (Tallinn, Estonia, 2008), pp. 5–8. ISBN 9781424424924

  39. Q. Xu, L. Ye, J. Hu, L. Huang, The implementation of low-power CAM with fully adiabatic driving for large node capacitances, in World Congress on Computer Science and Information Engineering, WRI 3, 413–417 (2009). doi:10.1109/CSIE.2009.894

  40. B.D. Yang, L.S. Kim, A low-power CAM using pulsed NAND–NOR match-line and charge-recycling search line driver. IEEE J. Solid State Circuits 40(8), 1736–1744 (2005)

    Article  Google Scholar 

  41. S.Younis, T.Knight , Asymptotically zero energy computing using split level charge recovery logic. Technical Report AITR-1500, MIT AI Laboratory, June 1994

  42. S. Zhang, J. Hu, D. Zhou, A low-power adiabatic content-addressable memory, in 50th Midwest Symposium on Circuits and Systems, MWSCAS, pp. 1285–1288 (2007)

  43. J.-W. Zhang, Y.-Z. Ye, B.-D. Liu, F. Guan, Self-timed charge recycling search-line drivers in content addressable memories, in IEEE International Symposium on Circuits and Systems, ISCAS (2009), pp. 3070–3073 (2009). doi:10.1109/ISCAS.2009.5118451

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jothi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jothi, D., Sivakumar, R. Design and Analysis of Power Efficient Binary Content Addressable Memory (PEBCAM) Core Cells. Circuits Syst Signal Process 37, 1422–1451 (2018). https://doi.org/10.1007/s00034-017-0628-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0628-0

Keywords

Navigation