Skip to main content
Log in

A New Second Order Absorbing Boundary Layer Formulation for Anisotropic-Elastic Wavefield Simulation

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The hybrid perfectly matched layer (H-PML) approach to boundary absorption, a combination of convolutional and multiaxial perfectly matched layer (C-PML and M-PML) approaches, is extended to simulate second-order displacement-stress elastic wave equations. The displacement components instead of the velocity components can be directly updated, which can further be used in elastic full waveform inversion. A general stability condition for the second-order displacement-stress elastic wave equations is also proposed. The C-PML and H-PML simulation that results in isotropic and anisotropic media are compared. H-PML is capable of absorbing boundary reflections in both isotropic and anisotropic media, but C-PML suffers severely from the boundary reflections in anisotropic media. The H-PML simulation results for both first- and second-order elastic wave equations show its efficiency in boundary reflections suppression. The computational cost comparison between C-PML and H-PML also demonstrated that H-PML needs smaller computational volumes than C-PML for suppressing the same level of boundary reflections, which is more suitably applied in anisotropic full waveform inversion to reduce the computational volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Berenger, J. P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185–200.

    Article  Google Scholar 

  • Bérenger, J.-P. (2002). Application of the CFS PML to the absorption of evanescent waves in waveguides. IEEE Microwave and Wireless Components Letters, 12(6), 218–220.

    Article  Google Scholar 

  • Chen, H., Yin, X., Qu, S., & Zhang, G. (2014). AVAZ inversion for fracture weakness parameters based on the rock physics model. Journal of Geophysics and Engineering, 11(6), 065007.

    Article  Google Scholar 

  • Chen, H., Yin, X., Gao, J., & Zhang, G. (2015). Seismic inversion for underground fractures detection based on effective anisotropy and fluid substitution. Science China Earth Sciences, 58(5), 805–814.

    Article  Google Scholar 

  • Collino, F., & Monk, P. B. (1998). Optimizing the perfectly matched layer. Computer methods in applied mechanics and engineering, 164(1–2), 157–171.

    Article  Google Scholar 

  • Collino, F., & Tsogka, C. (2001). Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics, 66(1), 294–307.

    Article  Google Scholar 

  • Dmitriev, M., & Lisitsa, V. (2011). Application of M-PML reflectionless boundary conditions to the numerical simulation of wave propagation in anisotropic media.Part I: Reflectivity. Numerical Analysis and Applications, 4(4), 271–280.

    Article  Google Scholar 

  • Engquist, B., & Majda, A. (1977). Absorbing boundary conditions for numerical simulation of waves. Proceedings of the National Academy of Sciences, 74(5), 1765–1766.

    Article  Google Scholar 

  • Festa, G., & Vilotte, J.-P. (2005). The Newmark scheme as velocity-stress time-staggering: An efficient PML implementation for spectral element simulations of elastodynamics. Geophysical Journal International, 161(3), 789–812.

    Article  Google Scholar 

  • Gauthier, O., Virieux, J., & Tarantola, A. (1986). Two-dimensional nonlinear inversion of seismic waveforms: Numerical results. Geophysics, 51(7), 1387–1403.

    Article  Google Scholar 

  • Komatitsch, D., & Martin, R. (2007). An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics, 72(5), SM155–SM167.

    Article  Google Scholar 

  • Komatitsch, D., & Tromp, J. (2003). A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophysical Journal International, 154(1), 146–1539.

    Article  Google Scholar 

  • Kuzuoglu, M., & Mittra, R. (1996). Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. Microwave and Guided Wave Letters, IEEE, 6(12), 447–449.

    Article  Google Scholar 

  • Li, J., Innanen, K. A., Tao, G., Zhang, K., & Lines, L. (2017). Wavefield simulation of 3D borehole dipole radiation. Geophysics, 82(3), D155–D169.

    Article  Google Scholar 

  • Li, Y., & Matar, O. B. (2010). Convolutional perfectly matched layer for elastic second-order wave equation. The Journal of the Acoustical Society of America, 127(3), 1318–1327.

    Article  Google Scholar 

  • Liu, Y.-S., Liu, S.-L., Zhang, M.-G., & Ma, D.-T. (2003). An improved perfectly matched layer absorbing boundary condition for second order elastic wave equation. Progress in Geophysics, 27, 2113–2122.

    Google Scholar 

  • Meza-Fajardo, K. C., & Papageorgiou, A. S. (2008). A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: Stability analysis. Bulletin of the Seismological Society of America, 98(4), 1811–1836.

    Article  Google Scholar 

  • Moczo, P., Kristek, J., & Ladislav, H. (2000). 3D fourth-order staggered-grid finite-difference schemes: Stability and grid dispersion. Bulletin of the Seismological Society of America, 90(3), 587–603.

    Article  Google Scholar 

  • Mora, P. (1987). Nonlinear two-dimensional elastic inversion of multioffset seismic data. Geophysics, 52(9), 1211–1228.

    Article  Google Scholar 

  • Pratt, R. G. (1999). Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model. Geophysics, 64(3), 888–901.

    Article  Google Scholar 

  • Pan, W., Innanen, K. A., Margrave, G. F., Fehler, M. C., Fang, X., & Li, J. (2016). Estimation of elastic constants for HTI media using Gauss-Newton and full-Newton multiparameter full-waveform inversion. Geophysics, 81(5), R275–R291.

    Article  Google Scholar 

  • Pei, Z., Fu, L.-Y., Sun, W., Jiang, T., & Zhou, B. (2012). Anisotropic finite-difference algorithm for modeling elastic wave propagation in fractured coalbeds. Geophysics, 77(1), C13–C26.

    Article  Google Scholar 

  • Ping, P., Zhang, Y., & Xu, Y. (2000). A multiaxial perfectly matched layer (M-PML) for the long-time simulation of elastic wave propagation in the second-order equations. Journal of Applied Geophysics, 101, 124–135.

    Article  Google Scholar 

  • Pinton, G. F., Dahl, J., Rosenzweig, S., & Trahey, G. E. (2009). A heterogeneous nonlinear attenuating full-wave model of ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 56(3), 474–488.

    Article  Google Scholar 

  • Roden, J. A., & Gedney, S. D. (2000). An efficient FDTD implementation of the CFS-PML for arbitrary media. Microwave and Optical Technology Letters, 27(3), 334–338.

    Article  Google Scholar 

  • Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8), 1259–1266.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the sponsors of CREWES for continued support. This work was funded by CREWES industrial sponsors, NSERC (Natural Science and Engineering Research Council of Canada) through the Grant CRDPJ 461179-13, and by the Canada First Research Excellence Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxiao Li.

Appendix

Appendix

The 3-D fourth-order displacement stress staggered grid FD scheme can be expressed as:

$$\begin{aligned} u_{I,J+\frac{1}{2},K+\frac{1}{2}}^{m+1} & = 2u_{I,J+\frac{1}{2},K+\frac{1}{2}}^{m}-u_{I,J+\frac{1}{2},K+\frac{1}{2}}^{m-1} +\frac{\varDelta ^2t}{h}\frac{1}{\rho _{I,J+\frac{1}{2},K+\frac{1}{2}}} \\ & \left[ a\left( \sigma ^{m}_{xx|I+\frac{1}{2},J+\frac{1}{2},K+\frac{1}{2}}-\sigma ^{m}_{xx|I-\frac{1}{2},J+\frac{1}{2},K+\frac{1}{2}}\right) \right. \\ & \left. +\,b\left( \sigma ^{m}_{xx|I+\frac{3}{2},J+\frac{1}{2},K+\frac{1}{2}}-\sigma ^{m}_{xx|I-\frac{3}{2},J+\frac{1}{2},K+\frac{1}{2}}\right) \right. \\ & \left. +\,a\left( \sigma ^{m}_{xy|I,J+1,K+\frac{1}{2}}-\sigma ^{m}_{xy|I,J,K+\frac{1}{2}}\right) \right. \\ & \left. +\,b\left( \sigma ^{m}_{xy|I,J+2,K+\frac{1}{2}}-\sigma ^{m}_{xy|I,J-1,K+\frac{1}{2}}\right) \right. \\ & \left. +\,a\left( \sigma ^{m}_{xz|I,J+\frac{1}{2},K+1}-\sigma ^{m}_{xz|I,J+\frac{1}{2},K}\right) \right. \\ & \left. +\,b\left( \sigma ^{m}_{xz|I,J+\frac{1}{2},K+2}-\sigma ^{m}_{xz|I,J+\frac{1}{2},K-1}\right) \right], \\ \end{aligned}$$
(28)
$$\begin{aligned} v_{I+\frac{1}{2},J,K+\frac{1}{2}}^{m+1}=\,&2v_{I+\frac{1}{2},J,K+\frac{1}{2}}^{m}-v_{I+\frac{1}{2},J,K+\frac{1}{2}}^{m-1} +\frac{\varDelta ^2t}{h}\frac{1}{\rho _{I+\frac{1}{2},J,K+\frac{1}{2}}}\\&\left[ a\left( \sigma ^{m}_{yy|I+\frac{1}{2},J+\frac{1}{2},K+\frac{1}{2}}-\sigma ^{m}_{yy|I+\frac{1}{2},J-\frac{1}{2},K+\frac{1}{2}}\right) \right. \\&\left. +\,b\left( \sigma ^{m}_{yy|I+\frac{1}{2},J+\frac{3}{2},K+\frac{1}{2}}-\sigma ^{m}_{yy|I+\frac{1}{2},J-\frac{3}{2},K+\frac{1}{2}}\right) \right. \\&\left. +\,a\left( \sigma ^{m}_{xy|I+1,J,K+\frac{1}{2}}-\sigma ^{m}_{xy|I,J,K+\frac{1}{2}}\right) \right. \\&\left. +\,b\left( \sigma ^{m}_{xy|I+2,J,K+\frac{1}{2}}-\sigma ^{m}_{xy|I-1,J,K+\frac{1}{2}}\right) \right. \\&\left. +\,a\left( \sigma ^{m}_{yz|I+\frac{1}{2},J,K+1}-\sigma ^{m}_{yz|I+\frac{1}{2},J,K}\right) \right. \\&\left. +\,b\left( \sigma ^{m}_{yz|I+\frac{1}{2},J,K+2}-\sigma ^{m}_{yz|I+\frac{1}{2},J,K-1}\right) \right], \\ \end{aligned}$$
(29)
$$\begin{aligned} w_{I+\frac{1}{2},J+\frac{1}{2},K}^{m+1}=\,&2w_{I+\frac{1}{2},J+\frac{1}{2},K}^{m}-w_{I+\frac{1}{2},J+\frac{1}{2},K}^{m-1} +\frac{\varDelta ^2t}{h}\frac{1}{\rho _{I+\frac{1}{2},J+\frac{1}{2},K}}\\&\left[ a\left( \sigma ^{m}_{zz|I+\frac{1}{2},J+\frac{1}{2},K+\frac{1}{2}}-\sigma ^{m}_{zz|I+\frac{1}{2},J+\frac{1}{2},K-\frac{1}{2}}\right) \right. \\&\left. +\,b\left( \sigma ^{m}_{zz|I+\frac{1}{2},J+\frac{1}{2},K+\frac{3}{2}}-\sigma ^{m}_{zz|I+\frac{1}{2},J+\frac{1}{2},K-\frac{3}{2}}\right) \right. \\&\left. +\,a\left( \sigma ^{m}_{xz|I+1,J+\frac{1}{2},K}-\sigma ^{m}_{xz|I,J+\frac{1}{2},K}\right) \right. \\&\left. +\,b\left( \sigma ^{m}_{xz|I+2,J+\frac{1}{2},K}-\sigma ^{m}_{xz|I-1,J+\frac{1}{2},K}\right) \right. \\&\left. +\,a\left( \sigma ^{m}_{yz|I+\frac{1}{2},J+1,K}-\sigma ^{m}_{yz|I+\frac{1}{2},J,K}\right) \right. \\&\left. +\,b\left( \sigma ^{m}_{yz|I+\frac{1}{2},J+2,K}-\sigma ^{m}_{yz|I+\frac{1}{2},J-1,K}\right) \right], \\ \end{aligned}$$
(30)

and

$$\begin{aligned} \sigma ^{m}_{xx|I+\frac{1}{2},J+\frac{1}{2},K+\frac{1}{2}}=\,&\frac{1}{h}\left\{ c_{11|{I+\frac{1}{2},J+\frac{1}{2},K+\frac{1}{2}}}\left[ a\left( u^{m}_{I+1,J+\frac{1}{2},K+\frac{1}{2}}-u^{m}_{I,J+\frac{1}{2},K+\frac{1}{2}}\right) \right. \right. \\&\left. \left. +\,b\left( u^{m}_{I+2,J+\frac{1}{2},K+\frac{1}{2}}-u^{m}_{I-1,J+\frac{1}{2},K+\frac{1}{2}}\right) \right] \right. \\&\left. +\,c_{12|{I+\frac{1}{2},J+\frac{1}{2},K+\frac{1}{2}}}\left[ a\left( v^{m}_{I+\frac{1}{2},J+1,K+\frac{1}{2}}-v^{m}_{I+\frac{1}{2},J,K+\frac{1}{2}}\right) \right. \right. \\&\left. \left. +\,b\left( v^{m}_{I+\frac{1}{2},J+2,K+\frac{1}{2}}-v^{m}_{I+\frac{1}{2},J-1,K+\frac{1}{2}}\right) \right] \right. \\&\left. +\,c_{13|{I+\frac{1}{2},J+\frac{1}{2},K+\frac{1}{2}}}\left[ a\left( w^{m}_{I+\frac{1}{2},J+\frac{1}{2},K+1}-w^{m}_{I+\frac{1}{2},J+\frac{1}{2},K}\right) \right. \right. \\&\left. \left. +\,b\left( w^{m}_{I+\frac{1}{2},J+\frac{1}{2},K+2}-v^{m}_{I+\frac{1}{2},J+\frac{1}{2},K-1}\right) \right] \right\}, \\ \end{aligned}$$
(31)
$$\begin{aligned} \sigma ^{m}_{yy|I+\frac{1}{2},J+\frac{1}{2},K+\frac{1}{2}}=\,&\frac{1}{h}\left\{ c_{12|{I+\frac{1}{2},J+\frac{1}{2},K+\frac{1}{2}}}\left[ a\left( u^{m}_{I+1,J+\frac{1}{2},K+\frac{1}{2}}-u^{m}_{I,J+\frac{1}{2},K+\frac{1}{2}}\right) \right. \right. \\&\left. \left. +\,b\left( u^{m}_{I+2,J+\frac{1}{2},K+\frac{1}{2}}-u^{m}_{I-1,J+\frac{1}{2},K+\frac{1}{2}}\right) \right] \right. \\&\left. +\,c_{22|{I+\frac{1}{2},J+\frac{1}{2},K+\frac{1}{2}}}\left[ a\left( v^{m}_{I+\frac{1}{2},J+1,K+\frac{1}{2}}-u^{m}_{I+\frac{1}{2},J,K+\frac{1}{2}}\right) \right. \right. \\&\left. \left. +\,b\left( v^{m}_{I+\frac{1}{2},J+2,K+\frac{1}{2}}-v^{m}_{I+\frac{1}{2},J-1,K+\frac{1}{2}}\right) \right] \right. \\&\left. \left. +\,c_{23|{I+\frac{1}{2},J+\frac{1}{2},K+\frac{1}{2}}}\left[ a\left( w^{m}_{I+\frac{1}{2},J+\frac{1}{2},K+1}-w^{m}_{I+\frac{1}{2},J+\frac{1}{2},K}\right) \right. \right. \right. \\&\left. \left. +\,b\left( w^{m}_{I+\frac{1}{2},J+\frac{1}{2},K+2}-v^{m}_{I+\frac{1}{2},J+\frac{1}{2},K-1}\right) \right] \right\}, \\ \end{aligned}$$
(32)
$$\begin{aligned} \sigma ^{m}_{zz|I+\frac{1}{2},J+\frac{1}{2},K+\frac{1}{2}}=\,&\frac{1}{h}\left\{ c_{13|{I+\frac{1}{2},J+\frac{1}{2},K+\frac{1}{2}}} \left[ a\left( u^{m}_{I+1,J+\frac{1}{2},K+\frac{1}{2}}-u^{m}_{I,J+\frac{1}{2},K+\,\frac{1}{2}}\right) \right. \right. \\&\left. \left. +\, b\left( u^{m}_{I+2,J+\frac{1}{2},K+\frac{1}{2}}-u^{m}_{I-1,J+\frac{1}{2},K+\frac{1}{2}}\right) \right] \right. \\&\left. +\, c_{23|{I+\frac{1}{2},J+\frac{1}{2},K+\frac{1}{2}}} \left[ a\left( v^{m}_{I+\frac{1}{2},J+1,K+\frac{1}{2}}-u^{m}_{I+\frac{1}{2},J,K+\frac{1}{2}}\right) \right. \right. \\&\left. \left. +\, b\left( v^{m}_{I+\frac{1}{2},J+2,K+\frac{1}{2}}-v^{m}_{I+\frac{1}{2},J-1,K+\frac{1}{2}}\right) \right] \right. \\&\left. +\, c_{33|{I+\frac{1}{2},J+\frac{1}{2},K+\frac{1}{2}}} \left[ a\left( w^{m}_{I+\frac{1}{2},J+\frac{1}{2},K+1}-w^{m}_{I+\frac{1}{2},J+\frac{1}{2},K}\right) \right. \right. \\&\left. \left. +\, b\left( w^{m}_{I+\frac{1}{2},J+\frac{1}{2},K+2}-v^{m}_{I+\frac{1}{2},J+\frac{1}{2},K-1}\right) \right] \right\}, \\ \end{aligned}$$
(33)
$$\begin{aligned} \sigma ^{m}_{xy|I,J,K+\frac{1}{2}}=\,&\frac{1}{h}c_{66|{I,J,K+\frac{1}{2}}} \left[ a\left( u^{m}_{I,J+\frac{1}{2},K+\frac{1}{2}}-u^{m}_{I,J-\frac{1}{2},K+\frac{1}{2}}\right) \right. \\&\left. +\,b\left( u^{m}_{I,J+\frac{3}{2},K+\frac{1}{2}}-u^{m}_{I,J-\frac{3}{2},K+\frac{1}{2}}\right) \right. \\&\left. +\,a\left( v^{m}_{I+\frac{1}{2},J,K+\frac{1}{2}}-v^{m}_{I-\frac{1}{2},J,K+\frac{1}{2}}\right) \right. \\&\left. +\,b\left( v^{m}_{I+\frac{3}{2},J,K+\frac{1}{2}}-v^{m}_{I-\frac{3}{2},J,K+\frac{1}{2}}\right) \right], \\ \end{aligned}$$
(34)
$$\begin{aligned} \sigma ^{m}_{xz|I,J+\frac{1}{2},K}=&\frac{1}{h}c_{44|{I,J+\frac{1}{2},K}} \left[ a\left( u^{m}_{I,J+\frac{1}{2},K+\frac{1}{2}}-u^{m}_{I,J+\frac{1}{2},K-\frac{1}{2}}\right) \right. \\&\left. +\,b\left( u^{m}_{I,J+\frac{1}{2},K+\frac{3}{2}}-u^{m}_{I,J+\frac{1}{2},K-\frac{3}{2}}\right) \right. \\&\left. +\,a\left( w^{m}_{I+\frac{1}{2},J+\frac{1}{2},K}-w^{m}_{I-\frac{1}{2},J+\frac{1}{2},K}\right) \right. \\&\left. +\,b\left( w^{m}_{I+\frac{3}{2},J+\frac{1}{2},K}-w^{m}_{I-\frac{3}{2},J+\frac{1}{2},K}\right) \right], \\ \end{aligned}$$
(35)
$$\begin{aligned} \sigma ^{m}_{yz|I,J+\frac{1}{2},K}=&\frac{1}{h}c_{44|{I+\frac{1}{2},J,K}} \left[ a\left( v^{m}_{I+\frac{1}{2},J,K+\frac{1}{2}}-v^{m}_{I+\frac{1}{2},J,K-\frac{1}{2}}\right) \right. \\&\left. +\,b\left( v^{m}_{I+\frac{1}{2},J,K+\frac{3}{2}}-v^{m}_{I+\frac{1}{2},J,K-\frac{3}{2}}\right) \right. \\&\left. +\,a\left( w^{m}_{I+\frac{1}{2},J+\frac{1}{2},K}-w^{m}_{I+\frac{1}{2},J-\frac{1}{2},K}\right) \right. \\&\left. +\,b\left( w^{m}_{I+\frac{1}{2},J+\frac{3}{2},K}-w^{m}_{I+\frac{1}{2},J-\frac{3}{2},K}\right) \right], \\ \end{aligned}$$
(36)

in which, a and b (\(a=9/8,b=-\,\frac{1}{2}4\)) are the fourth-order staggered grid parameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Innanen, K.A. & Wang, B. A New Second Order Absorbing Boundary Layer Formulation for Anisotropic-Elastic Wavefield Simulation. Pure Appl. Geophys. 176, 1717–1730 (2019). https://doi.org/10.1007/s00024-018-2046-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2046-z

Keywords

Navigation