Skip to main content
Log in

Continuous Dependence on Initial Data in Fluid–Structure Motions

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We prove a continuous dependence theorem for weak solutions of equations governing a fluid–structure interaction problem in two spatial dimensions. The proof is based on a priori estimates which, in particular, convey uniqueness of weak solutions. The estimates are obtained using Eulerian coordinates, without remapping the problem into a fixed domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abels H.: On a diffusive interface model for two-phase flows of viscous, incompressible fluids with matched densities. Max Planck Inst. Math. Sci. 15, 307–352 (2007) (Preprint)

    Google Scholar 

  2. Abels H.: The intial value problem for the Navier–Stokes equationswith a free surface in L q-Sobolev spaces. Adv. Diff. Eq. 10, 45–64 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Abels H.: On generalized solutions of two-phase flows for viscous incompressible fluis. Interfaces Free Bound 9, 31–65 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abels H.: On the notion of generalized solutions of two-phase flows for viscous incompressible fluis. RISM Kokyuroku Bessatsu B1, 1–15 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Adams R.: Sobolev Spaces. Academic Press, London (1975)

    MATH  Google Scholar 

  6. Batchelor G.K.: An Introduction to Fluid Dynamics. Cambridge Univ. Press, (1967)

  7. Beale J.T.: Large time regularity of viscous surface waves. Arch. Ratl. Mech. Anal. 84, 307–352 (1983)

    MathSciNet  Google Scholar 

  8. Baiocchi C., Evans L.C., Frank L., Friedman A.: Uniqueness for two immiscible fluids in a one-dimensional porous medium. Arch. Ratl. Mech. Anal. 84, 307–352 (1983)

    Google Scholar 

  9. Bernstein B., Toupin R.A.: Korn’s inequalities for the sphere and circle. Arch. Ratl. Mech. Anal. 6, 51–64 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beirao H., Veiga D.: On the existence of strong solutions to a coupled fluid–structure evolution problem. J. Math. Fluid Mech. 6(1), 21–52 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Cahn J., Hilliard J.E.: Free energy of non uniform system I. Interfacial energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  ADS  Google Scholar 

  12. Canic S., Hartley C.J., Rosenstrauch D., Tambaca J., Guidoboni G., Mikelic A.: Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics and experimental validation. Ann. Biomed. Eng. 34(4), 575–592 (2006)

    Article  Google Scholar 

  13. Canic S., Tambaca J., Guidoboni G., Mikelic A., Hartley C.J., Rosenstrauch D.: Modeling viscoelastic behaviour of arterial walls and their interaction with pulsatile blood flow. SIAM J. Appl. Math. 67(1), 164–193 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chambolle A., Desjardin B., Esteban M.J., Grandmont C.: Existence of weak solutions for unsteady fluid-plate interaction problem. J. Math. Fluid Mech. 7(3), 368–404 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Coutand D., Shkoller S.: Motion of an elastic solid inside an incompressible viscous fluid. Arch. Rat. Mech. Anal. 176(1), 25–102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coutand, D., Shkoller, S.: Unique solvability of the free boundary Navier–Stokes equations with surface tension. http://arxiv.org/abs/math/0212116v2 (Preprint) (2003)

  17. Debussche A., Dettori L.: On Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Anal. 24, 1491–1514 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Denisova, V.I.: Evolution of a closed interface between two liquids of different types. In: European Congress of Mathematics, vol. II, Barcelona, 2000, pp. 263–272. Progr. Math., vol. 202. Birkhäuser, Basel

  19. Formaggia L., Gerbeau J.-F., Nobile F., Quarteroni A.: On the coupling of 3-D and 1-D NavierStokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191, 561–582 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Friedrichs K.O.: On the boundary value problems of theory of elasticity and Korn’s inequatity. Ann Math Ser II 48, 441–471 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kondrat’ev, V.A., Oleinik, O.A.: On the dependence of the constant in Korn’s inequality on parameters characterizing the geometry of the region. Commun. Moscow Math. Soc. Uspehi Mat. Nauk 44, 153–160 (1989) [Russian Math. Surv. 44, 187–195 (1989)]

  22. Korn A.: Eigenschwingungen eins elastischen Körpers mit ruhender Oberflache. Akad. der Wissensch., Munich, Math-phys. Kl., Berichte 36, 351–401 (1906)

    Google Scholar 

  23. Glowinski, R.: Finite element methods for incompressible viscous flow. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. IX. North-Holland, Amsterdam (2003)

  24. Gobert J.: Une inegalité fondamentale de la theorie de l’élasticité. Bull. Soc. Roy. Sci. Liege 31, 182–191 (1962)

    MathSciNet  MATH  Google Scholar 

  25. Grandmont C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. SIAM J. Math. Anal. 40(2), 716–737 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guidorzi, M., Padula, M.: Approximate solutions to the 2-D unsteady Navier–Stokes system with free surface. In: Hyperbolic Problems and Regularity questions, pp. 109–119. Trends in mathematics Birkhäuser Verlag, Basel (2007)

  27. Guidorzi M., Padula M., Plotnikov P.: Hopf solutions to a fluid–elastic interaction model. Math. Models Methods Appl. Sci. 18(2), 215–269 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hoenberg P.C., Halperin B.I.: Theory of critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)

    Article  ADS  Google Scholar 

  29. Jin B.J., Padula M.: On existence of non steady compressible viscous flows in a horizontal layer with free upper surface. Comm. Pure Appl. Anal. 1(3), 370–415 (2002)

    MathSciNet  Google Scholar 

  30. Landau L.D., Lifshitz E.M.: Fluid Mechanics. Pergamon press, NY (1959)

    Google Scholar 

  31. Ladyzhenskaja O.A.: The Mathematical Theory of Viscous Incompressible Flow, vol. 2. Gordon & Breach, NY (1969)

    Google Scholar 

  32. Ladyzhenskaja O.A., Solonnikov V.A.: Some problems of vector analysis and generalized formulations of boundary-value problems for the Navier–Stokes equations. Zap. Nauc. Sem. Leningrad Otd. Math. Inst. 59, 81–116 (1976)

    Google Scholar 

  33. Lowergrub J., Truskinosky L.: Quasi incompressible Cahn–Hiliard Fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454, 2617–2654 (1978)

    Article  Google Scholar 

  34. Nuori A., Poupad F.: An existence theorem for the multifluid Navier–Stokes problem. J. Differ. Equ. 122(1), 71–88 (1995)

    Article  Google Scholar 

  35. Padula M.: Free work and control of equilibrium configurations. Ann. Univ. Ferrara Sez. VII (N.S.) 49, 375–396 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Padula, M.: Free work and control of equilibrium configurations. In: Rodrigues, J.F., Seregin, G., Urbano, J.M. (eds.) Trends in Partial Differential Equations on Mathematical Physics. Obidos 7–10 june, 2003. Progress in nonlinear differential equations and their applications, vol. 61. Birkäuser, Basel, pp. 213–223 (2005)

  37. Padula, M.: Free Work identity and nonlinear instability in fluids with free boundaries. Recent advances in elliptic and parabolic problems. In: Chen, C.-C., Chipot, M., Lin, C.S. (eds.) Proceedings of the International Conference, Hsinchu, Taiwan University, 16–20 february 2004. World Scientific, Singapore, pp. 203–214 (2005)

  38. Prodi, G.: Résultats récents et problèmes anciens dans la théorie des equations de Navier–Stokes. Colloquies internationaux du centre nationale de la richerche scientifique, n. 117, (1962)

  39. Rowlinson, J.S.: Translation of J.D. van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, J. Stat. Phys. 20, 197–244 (1979)

  40. Quarteroni, A., Sacco, R., Saleri, F.: Numerical mathematics. In: Texts in Applied Mathematics (TAM) vol. 37. Springer, New York (2000) (Second Edition (2007))

  41. Quarteroni A., Tuveri M., Veneziani A.: Computational vascular fluid dynamics: problems, models and methods. Comput. Visual. Sci. 2, 163–197 (2000)

    Article  MATH  Google Scholar 

  42. Shih S.M., Shen M.C.: Uniform asymptotic approximation for viscous fluid flow down an inclined plane. SIAM J. Math. Anal. 6, 560–582 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sohr H.: The Navier–Stokes equations. An elementary functional analytic approach. Birkhäuser Verlag, Basel (2001)

    MATH  Google Scholar 

  44. Solonnikov V.A.: Solvability of the problem of the motion of a viscous incompressible liquid buonded by a free surface. Math. USSR Izvestia 41, 1388–1427 (1977)

    MathSciNet  MATH  Google Scholar 

  45. Solonnikov V.A.: Solvability of the problem of evolution of a viscous incompressible fluid bounded by a free surface on a finite time interval. St. Petersburg Math. J. 3, 189–220 (1992)

    MathSciNet  Google Scholar 

  46. Solonnikov V.A.: On the transient motion of an isolated volume of viscous incompressible fluid. Math. USSR Izvestia 31, 381–405 (1988)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariarosaria Padula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guidoboni, G., Guidorzi, M. & Padula, M. Continuous Dependence on Initial Data in Fluid–Structure Motions. J. Math. Fluid Mech. 14, 1–32 (2012). https://doi.org/10.1007/s00021-010-0031-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-010-0031-0

Mathematics Subject Classification (2010)

Keywords

Navigation