Skip to main content

Advertisement

Log in

Hypoxia-regulated mechanisms in the pathogenesis of obesity and non-alcoholic fatty liver disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The pandemic rise in obesity has resulted in an increased incidence of metabolic complications. Non-alcoholic fatty liver disease is the hepatic manifestation of the metabolic syndrome and has become the most common chronic liver disease in large parts of the world. The adipose tissue expansion and hepatic fat accumulation characteristics of these disorders compromise local oxygen homeostasis. The resultant tissue hypoxia induces adaptive responses to restore oxygenation and tissue metabolism and cell survival. Hypoxia-inducible factors (HIFs) function as master regulators of this hypoxia adaptive response, and are in turn hydroxylated by prolyl hydroxylases (PHDs). PHDs are the main cellular oxygen sensors and regulate HIF proteasomal degradation in an oxygen-dependent manner. HIFs and PHDs are implicated in numerous physiological and pathological conditions. Extensive research using genetic models has revealed that hypoxia signaling is also a key mechanism in adipose tissue dysfunction, leading to adipose tissue fibrosis, inflammation and insulin resistance. Moreover, hypoxia affects liver lipid metabolism and deranges hepatic lipid accumulation. This review summarizes the molecular mechanisms through which the hypoxia adaptive response affects adipocyte and hepatic metabolism, and the therapeutic possibilities of modulating HIFs and PHDs in obesity and fatty liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ng M, Fleming T, Robinson M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384(9945):766–781

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yki-Jarvinen H (2014) Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2(11):901–910

    Article  CAS  PubMed  Google Scholar 

  3. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2015) Global epidemiology of non-alcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence and outcomes. Hepatology. doi:10.1002/hep.28431

    Google Scholar 

  4. Byrne CD, Targher G (2015) NAFLD: a multisystem disease. J Hepatol 62(1 Suppl):S47–S64

    Article  PubMed  Google Scholar 

  5. Lonardo A, Ballestri S, Marchesini G, Angulo P, Loria P (2015) Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig Liver Dis 47(3):181–190

    Article  PubMed  Google Scholar 

  6. Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 24:97–106

    Article  CAS  Google Scholar 

  7. Suzuki T, Shinjo S, Arai T, Kanai M, Goda N (2014) Hypoxia and fatty liver. World J Gastroenterol 20(41):15087–15097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nath B, Szabo G (2012) Hypoxia and hypoxia inducible factors: diverse roles in liver diseases. Hepatology 55(2):622–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Palmer BF, Clegg DJ (2014) Oxygen sensing and metabolic homeostasis. Mol Cell Endocrinol 397(1–2):51–58

    Article  CAS  PubMed  Google Scholar 

  10. Ye J, Gao Z, Yin J, He Q (2007) Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 293(4):E1118–E1128

    Article  CAS  PubMed  Google Scholar 

  11. Rausch ME, Weisberg S, Vardhana P, Tortoriello DV (2008) Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes (Lond) 32(3):451–463

    Article  CAS  Google Scholar 

  12. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867

    Article  CAS  PubMed  Google Scholar 

  13. Trayhurn P, Wood IS (2004) Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 92(3):347–355

    Article  CAS  PubMed  Google Scholar 

  14. Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, Rood JC, Burk DH, Smith SR (2009) Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58(3):718–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kabon B, Nagele A, Reddy D, Eagon C, Fleshman JW, Sessler DI, Kurz A (2004) Obesity decreases perioperative tissue oxygenation. Anesthesiology 100(2):274–280

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hodson L, Humphreys SM, Karpe F, Frayn KN (2013) Metabolic signatures of human adipose tissue hypoxia in obesity. Diabetes 62(5):1417–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goossens GH, Bizzarri A, Venteclef N et al (2011) Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation 124(1):67–76

    Article  CAS  PubMed  Google Scholar 

  18. Chechi K, Nedergaard J, Richard D (2014) Brown adipose tissue as an anti-obesity tissue in humans. Obes Rev 15(2):92–106

    Article  CAS  PubMed  Google Scholar 

  19. Shimizu I, Aprahamian T, Kikuchi R, Shimizu A, Papanicolaou KN, MacLauchlan S, Maruyama S, Walsh K (2014) Vascular rarefaction mediates whitening of brown fat in obesity. J Clin Invest 124(5):2099–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Samuel VT, Shulman GI (2016) The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest 126(1):12–22

    Article  PubMed  Google Scholar 

  21. Sattar N, Gill JM (2014) Type 2 diabetes as a disease of ectopic fat? BMC Med 12:123

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jungermann K, Kietzmann T (2000) Oxygen: modulator of metabolic zonation and disease of the liver. Hepatology 31(2):255–260

    Article  CAS  PubMed  Google Scholar 

  23. Arteel GE, Iimuro Y, Yin M, Raleigh JA, Thurman RG (1997) Chronic enteral ethanol treatment causes hypoxia in rat liver tissue in vivo. Hepatology 25(4):920–926

    Article  CAS  PubMed  Google Scholar 

  24. Arteel GE, Raleigh JA, Bradford BU, Thurman RG (1996) Acute alcohol produces hypoxia directly in rat liver tissue in vivo: role of Kupffer cells. Am J Physiol 271(3 Pt 1):G494–G500

    CAS  PubMed  Google Scholar 

  25. Mantena SK, Vaughn DP, Andringa KK, Eccleston HB, King AL, Abrams GA, Doeller JE, Kraus DW, Darley-Usmar VM, Bailey SM (2009) High fat diet induces dysregulation of hepatic oxygen gradients and mitochondrial function in vivo. Biochem J 417(1):183–193

    Article  CAS  PubMed  Google Scholar 

  26. Wang GL, Semenza GL (1993) Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268(29):21513–21518

    CAS  PubMed  Google Scholar 

  27. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92(12):5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coulon S, Heindryckx F, Geerts A, Van Steenkiste C, Colle I, Van Vlierberghe H (2011) Angiogenesis in chronic liver disease and its complications. Liver Int 31(2):146–162

    Article  CAS  PubMed  Google Scholar 

  29. Ichiki T, Sunagawa K (2014) Novel roles of hypoxia response system in glucose metabolism and obesity. Trends Cardiovasc Med 24(5):197–201

    Article  CAS  PubMed  Google Scholar 

  30. Kaelin WG Jr (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2(9):673–682

    Article  CAS  PubMed  Google Scholar 

  31. Keith B, Johnson RS, Simon MC (2012) HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12(1):9–22

    CAS  Google Scholar 

  32. Semenza GL (2014) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 9:47–71

    Article  CAS  PubMed  Google Scholar 

  33. Loboda A, Jozkowicz A, Dulak J (2012) HIF-1 versus HIF-2–is one more important than the other? Vascul Pharmacol 56(5–6):245–251

    Article  CAS  PubMed  Google Scholar 

  34. Fraisl P, Mazzone M, Schmidt T, Carmeliet P (2009) Regulation of angiogenesis by oxygen and metabolism. Dev Cell 16(2):167–179

    Article  CAS  PubMed  Google Scholar 

  35. Stiehl DP, Wirthner R, Koditz J, Spielmann P, Camenisch G, Wenger RH (2006) Increased prolyl 4-hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen-sensing system. J Biol Chem 281(33):23482–23491

    Article  CAS  PubMed  Google Scholar 

  36. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279(37):38458–38465

    Article  CAS  PubMed  Google Scholar 

  37. Corvera S, Gealekman O (2014) Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochim Biophys Acta 1842(3):463–472

    Article  CAS  PubMed  Google Scholar 

  38. Christiaens V, Lijnen HR (2010) Angiogenesis and development of adipose tissue. Mol Cell Endocrinol 318(1–2):2–9

    Article  CAS  PubMed  Google Scholar 

  39. Trayhurn P (2013) Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 93(1):1–21

    Article  CAS  PubMed  Google Scholar 

  40. Lee YS, Kim JW, Osborne O et al (2014) Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell 157(6):1339–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Busiello RA, Savarese S, Lombardi A (2015) Mitochondrial uncoupling proteins and energy metabolism. Front Physiol 6:36

    Article  PubMed  PubMed Central  Google Scholar 

  42. Trayhurn P, Alomar SY (2015) Oxygen deprivation and the cellular response to hypoxia in adipocytes–perspectives on white and brown adipose tissues in obesity. Front Endocrinol (Lausanne) 6:19

    Google Scholar 

  43. Halberg N, Khan T, Trujillo ME et al (2009) Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol 29(16):4467–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hosogai N, Fukuhara A, Oshima K et al (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56(4):901–911

    Article  CAS  PubMed  Google Scholar 

  45. Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95(14):7987–7992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, Minnemann T, Shulman GI, Kahn BB (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409(6821):729–733

    Article  CAS  PubMed  Google Scholar 

  47. Jiang C, Qu A, Matsubara T, Chanturiya T, Jou W, Gavrilova O, Shah YM, Gonzalez FJ (2011) Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice. Diabetes 60(10):2484–2495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun K, Halberg N, Khan M, Magalang UJ, Scherer PE (2013) Selective inhibition of hypoxia-inducible factor 1α ameliorates adipose tissue dysfunction. Mol Cell Biol 33(5):904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shimba S, Wada T, Hara S, Tezuka M (2004) EPAS1 promotes adipose differentiation in 3T3-L1 cells. J Biol Chem 279(39):40946–40953

    Article  CAS  PubMed  Google Scholar 

  50. Choe SS, Shin KC, Ka S, Lee YK, Chun JS, Kim JB (2014) Macrophage HIF-2α ameliorates adipose tissue inflammation and insulin resistance in obesity. Diabetes 63(10):3359–3371

    Article  CAS  PubMed  Google Scholar 

  51. Garcia-Martin R, Alexaki VI, Qin N, et al (2015) Adipocyte-specific HIF2α deficiency exacerbates obesity-induced brown adipose tissue dysfunction and metabolic dysregulation. Mol Cell Biol 36(3):376–393

    Article  PubMed  Google Scholar 

  52. Lin Q, Huang Y, Booth CJ, Haase VH, Johnson RS, Celeste Simon M, Giordano FJ, Yun Z (2013) Activation of hypoxia-inducible factor-2 in adipocytes results in pathological cardiac hypertrophy. J Am Heart Assoc 2(6):e000548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lee KY, Gesta S, Boucher J, Wang XL, Kahn CR (2011) The differential role of Hif1β/Arnt and the hypoxic response in adipose function, fibrosis, and inflammation. Cell Metab 14(4):491–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wood IS, Stezhka T, Trayhurn P (2011) Modulation of adipokine production, glucose uptake and lactate release in human adipocytes by small changes in oxygen tension. Pflugers Arch 462(3):469–477

    Article  CAS  PubMed  Google Scholar 

  55. Palmer BF, Clegg DJ (2014) Ascent to altitude as a weight loss method: the good and bad of hypoxia inducible factor activation. Obesity (Silver Spring) 22(2):311–317

    Article  Google Scholar 

  56. Cushman SW, Wardzala LJ (1980) Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem 255(10):4758–4762

    CAS  PubMed  Google Scholar 

  57. Selvaraju V, Parinandi NL, Adluri RS, Goldman JW, Hussain N, Sanchez JA, Maulik N (2014) Molecular mechanisms of action and therapeutic uses of pharmacological inhibitors of HIF-prolyl 4-hydroxylases for treatment of ischemic diseases. Antioxid Redox Signal 20(16):2631–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Besarab A, Chernyavskaya E, Motylev I et al (2015) Roxadustat (FG-4592): correction of Anemia in Incident Dialysis Patients. J Am Soc Nephrol 27(4):1225–1233

    Article  PubMed  Google Scholar 

  59. Besarab A, Provenzano R, Hertel J, Zabaneh R, Klaus SJ, Lee T, Leong R, Hemmerich S, Yu KH, Neff TB (2015) Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients. Nephrol Dial Transplant 30(10):1665–1673

    Article  PubMed  PubMed Central  Google Scholar 

  60. Matsuura H, Ichiki T, Inoue E, Nomura M, Miyazaki R, Hashimoto T, Ikeda J, Takayanagi R, Fong GH, Sunagawa K (2013) Prolyl hydroxylase domain protein 2 plays a critical role in diet-induced obesity and glucose intolerance. Circulation 127(21):2078–2087

    Article  CAS  PubMed  Google Scholar 

  61. Raguso CA, Guinot SL, Janssens JP, Kayser B, Pichard C (2004) Chronic hypoxia: common traits between chronic obstructive pulmonary disease and altitude. Curr Opin Clin Nutr Metab Care 7(4):411–417

    Article  CAS  PubMed  Google Scholar 

  62. Michailidou Z, Morton NM, Moreno Navarrete JM, West CC, Stewart KJ, Fernandez-Real JM, Schofield CJ, Seckl JR, Ratcliffe PJ (2015) Adipocyte pseudohypoxia suppresses lipolysis and facilitates benign adipose tissue expansion. Diabetes 64(3):733–745

    Article  CAS  PubMed  Google Scholar 

  63. Minamishima YA, Moslehi J, Padera RF, Bronson RT, Liao R, Kaelin WG Jr (2009) A feedback loop involving the Phd3 prolyl hydroxylase tunes the mammalian hypoxic response in vivo. Mol Cell Biol 29(21):5729–5741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7(1):77–85

    Article  CAS  PubMed  Google Scholar 

  65. Wong BW, Kuchnio A, Bruning U, Carmeliet P (2013) Emerging novel functions of the oxygen-sensing prolyl hydroxylase domain enzymes. Trends Biochem Sci 38(1):3–11

    Article  CAS  PubMed  Google Scholar 

  66. He Q, Gao Z, Yin J, Zhang J, Yun Z, Ye J (2011) Regulation of HIF-1α activity in adipose tissue by obesity-associated factors: adipogenesis, insulin, and hypoxia. Am J Physiol Endocrinol Metab 300(5):E877–E885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, Cole RN, Pandey A, Semenza GL (2011) Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145(5):732–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Taniguchi CM, Finger EC, Krieg AJ et al (2013) Cross-talk between hypoxia and insulin signaling through Phd3 regulates hepatic glucose and lipid metabolism and ameliorates diabetes. Nat Med 19(10):1325–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang X, Lam KS, Ye H, Chung SK, Zhou M, Wang Y, Xu A (2010) Adipose tissue-specific inhibition of hypoxia-inducible factor 1α induces obesity and glucose intolerance by impeding energy expenditure in mice. J Biol Chem 285(43):32869–32877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Birkenfeld AL, Shulman GI (2014) Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 59(2):713–723

    Article  PubMed  PubMed Central  Google Scholar 

  71. Virtue S, Vidal-Puig A (2010) Adipose tissue expandability, lipotoxicity and the metabolic syndrome—an allostatic perspective. Biochim Biophys Acta 1801(3):338–349

    Article  CAS  PubMed  Google Scholar 

  72. Sun K, Wernstedt Asterholm I, Kusminski CM, Bueno AC, Wang ZV, Pollard JW, Brekken RA, Scherer PE (2012) Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc Natl Acad Sci USA 109(15):5874–5879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sung HK, Doh KO, Son JE et al (2013) Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell Metab 17(1):61–72

    Article  CAS  PubMed  Google Scholar 

  74. Elias I, Franckhauser S, Ferre T et al (2012) Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes 61(7):1801–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. During MJ, Liu X, Huang W, Magee D, Slater A, McMurphy T, Wang C, Cao L (2015) Adipose VEGF links the white-to-brown fat switch with environmental, genetic, and pharmacological stimuli in male mice. Endocrinology 156(6):2059–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lolmede K, de Saint Durand, Front V, Galitzky J, Lafontan M, Bouloumie A (2003) Effects of hypoxia on the expression of proangiogenic factors in differentiated 3T3-F442A adipocytes. Int J Obes Relat Metab Disord 27(10):1187–1195

    Article  CAS  PubMed  Google Scholar 

  77. Yin J, Gao Z, He Q, Zhou D, Guo Z, Ye J (2009) Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. Am J Physiol Endocrinol Metab 296(2):E333–E342

    Article  CAS  PubMed  Google Scholar 

  78. Xiong Y, Qu Z, Chen N, Gong H, Song M, Chen X, Du J, Xu C (2014) The local corticotropin-releasing hormone receptor 2 signalling pathway partly mediates hypoxia-induced increases in lipolysis via the cAMP-protein kinase A signalling pathway in white adipose tissue. Mol Cell Endocrinol 392(1–2):106–114

    Article  CAS  PubMed  Google Scholar 

  79. Hashimoto T, Yokokawa T, Endo Y, Iwanaka N, Higashida K, Taguchi S (2013) Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes. Biochem Biophys Res Commun 440(1):43–49

    Article  CAS  PubMed  Google Scholar 

  80. Pasarica M, Rood J, Ravussin E, Schwarz JM, Smith SR, Redman LM (2010) Reduced oxygenation in human obese adipose tissue is associated with impaired insulin suppression of lipolysis. J Clin Endocrinol Metab 95(8):4052–4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dowman JK, Tomlinson JW, Newsome PN (2010) Pathogenesis of non-alcoholic fatty liver disease. QJM 103(2):71–83

    Article  CAS  PubMed  Google Scholar 

  82. Jouet P, Sabate JM, Maillard D, Msika S, Mechler C, Ledoux S, Harnois F, Coffin B (2007) Relationship between obstructive sleep apnea and liver abnormalities in morbidly obese patients: a prospective study. Obes Surg 17(4):478–485

    Article  PubMed  Google Scholar 

  83. Polotsky VY, Patil SP, Savransky V et al (2009) Obstructive sleep apnea, insulin resistance, and steatohepatitis in severe obesity. Am J Respir Crit Care Med 179(3):228–234

    Article  PubMed  Google Scholar 

  84. Musso G, Cassader M, Olivetti C, Rosina F, Carbone G, Gambino R (2013) Association of obstructive sleep apnoea with the presence and severity of non-alcoholic fatty liver disease. A systematic review and meta-analysis. Obes Rev 14(5):417–431

    Article  CAS  PubMed  Google Scholar 

  85. Drager LF, Li J, Reinke C, Bevans-Fonti S, Jun JC, Polotsky VY (2011) Intermittent hypoxia exacerbates metabolic effects of diet-induced obesity. Obesity (Silver Spring) 19(11):2167–2174

    Article  CAS  Google Scholar 

  86. Li J, Bosch-Marce M, Nanayakkara A, Savransky V, Fried SK, Semenza GL, Polotsky VY (2006) Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor-1α. Physiol Genomics 25(3):450–457

    Article  CAS  PubMed  Google Scholar 

  87. Goda N, Kanai M (2012) Hypoxia-inducible factors and their roles in energy metabolism. Int J Hematol 95(5):457–463

    Article  CAS  PubMed  Google Scholar 

  88. Lefebvre P, Chinetti G, Fruchart JC, Staels B (2006) Sorting out the roles of PPAR α in energy metabolism and vascular homeostasis. J Clin Invest 116(3):571–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rankin EB, Rha J, Selak MA, Unger TL, Keith B, Liu Q, Haase VH (2009) Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Mol Cell Biol 29(16):4527–4538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Qu A, Taylor M, Xue X, Matsubara T, Metzger D, Chambon P, Gonzalez FJ, Shah YM (2011) Hypoxia-inducible transcription factor 2α promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosis. Hepatology 54(2):472–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nishiyama Y, Goda N, Kanai M et al (2012) HIF-1α induction suppresses excessive lipid accumulation in alcoholic fatty liver in mice. J Hepatol 56(2):441–447

    Article  CAS  PubMed  Google Scholar 

  92. Tailleux A, Wouters K, Staels B (2012) Roles of PPARs in NAFLD: potential therapeutic targets. Biochim Biophys Acta 1821(5):809–818

    Article  CAS  PubMed  Google Scholar 

  93. Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347(6294):645–650

    Article  CAS  PubMed  Google Scholar 

  94. Sahebkar A, Chew GT, Watts GF (2014) New peroxisome proliferator-activated receptor agonists: potential treatments for atherogenic dyslipidemia and non-alcoholic fatty liver disease. Expert Opin Pharmacother 15(4):493–503

    Article  CAS  PubMed  Google Scholar 

  95. Hamaguchi T, Iizuka N, Tsunedomi R et al (2008) Glycolysis module activated by hypoxia-inducible factor 1α is related to the aggressive phenotype of hepatocellular carcinoma. Int J Oncol 33(4):725–731

    CAS  PubMed  Google Scholar 

  96. Nath B, Levin I, Csak T, Petrasek J, Mueller C, Kodys K, Catalano D, Mandrekar P, Szabo G (2011) Hepatocyte-specific hypoxia-inducible factor-1α is a determinant of lipid accumulation and liver injury in alcohol-induced steatosis in mice. Hepatology 53(5):1526–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Magnusson B, Asp L, Bostrom P, Ruiz M, Stillemark-Billton P, Linden D, Boren J, Olofsson SO (2006) Adipocyte differentiation-related protein promotes fatty acid storage in cytosolic triglycerides and inhibits secretion of very low-density lipoproteins. Arterioscler Thromb Vasc Biol 26(7):1566–1571

    Article  CAS  PubMed  Google Scholar 

  98. Bostrom P, Magnusson B, Svensson PA, Wiklund O, Boren J, Carlsson LM, Stahlman M, Olofsson SO, Hulten LM (2006) Hypoxia converts human macrophages into triglyceride-loaded foam cells. Arterioscler Thromb Vasc Biol 26(8):1871–1876

    Article  PubMed  CAS  Google Scholar 

  99. Hijmans BS, Grefhorst A, Oosterveer MH, Groen AK (2014) Zonation of glucose and fatty acid metabolism in the liver: mechanism and metabolic consequences. Biochimie 96:121–129

    Article  CAS  PubMed  Google Scholar 

  100. Kohjima M, Enjoji M, Higuchi N et al (2007) Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med 20(3):351–358

    CAS  PubMed  Google Scholar 

  101. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115(5):1343–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, Kellum JM, Min H, Luketic VA, Sanyal AJ (2008) Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 48(6):1810–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Postic C, Magnuson MA (2000) DNA excision in liver by an albumin-Cre transgene occurs progressively with age. Genesis 26(2):149–150

    Article  CAS  PubMed  Google Scholar 

  104. Haase VH, Glickman JN, Socolovsky M, Jaenisch R (2001) Vascular tumors in livers with targeted inactivation of the von Hippel–Lindau tumor suppressor. Proc Natl Acad Sci USA 98(4):1583–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kim WY, Safran M, Buckley MR, Ebert BL, Glickman J, Bosenberg M, Regan M, Kaelin WG Jr (2006) Failure to prolyl hydroxylate hypoxia-inducible factor α phenocopies VHL inactivation in vivo. EMBO J 25(19):4650–4662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shin MK, Drager LF, Yao Q, Bevans-Fonti S, Yoo DY, Jun JC, Aja S, Bhanot S, Polotsky VY (2012) Metabolic consequences of high-fat diet are attenuated by suppression of HIF-1α. PLoS One 7(10):e46562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ochiai D, Goda N, Hishiki T, Kanai M, Senoo-Matsuda N, Soga T, Johnson RS, Yoshimura Y, Suematsu M (2011) Disruption of HIF-1α in hepatocytes impairs glucose metabolism in diet-induced obesity mice. Biochem Biophys Res Commun 415(3):445–449

    Article  CAS  PubMed  Google Scholar 

  108. Le Roy T, Llopis M, Lepage P et al (2013) Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62(12):1787–1794

    Article  PubMed  CAS  Google Scholar 

  109. Diamant M, Blaak EE, de Vos WM (2011) Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev 12(4):272–281

    Article  CAS  PubMed  Google Scholar 

  110. Mehal WZ (2012) HIF-1α is a major and complex player in alcohol induced liver diseases. J Hepatol 56(2):311–312

    Article  PubMed  Google Scholar 

  111. Moon JO, Welch TP, Gonzalez FJ, Copple BL (2009) Reduced liver fibrosis in hypoxia-inducible factor-1α-deficient mice. Am J Physiol Gastrointest Liver Physiol 296(3):G582–G592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang XL, Suzuki R, Lee K et al (2009) Ablation of ARNT/HIF1β in liver alters gluconeogenesis, lipogenic gene expression, and serum ketones. Cell Metab 9(5):428–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ni HM, Bhakta A, Wang S, Li Z, Manley S, Huang H, Copple B, Ding WX (2014) Role of hypoxia inducing factor-1β in alcohol-induced autophagy, steatosis and liver injury in mice. PLoS One 9(12):e115849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Rahtu-Korpela L, Karsikas S, Horkko S et al (2014) HIF prolyl 4-hydroxylase-2 inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction. Diabetes 63(10):3324–3333

    Article  CAS  PubMed  Google Scholar 

  115. Hyvarinen J, Hassinen IE, Sormunen R, Maki JM, Kivirikko KI, Koivunen P, Myllyharju J (2010) Hearts of hypoxia-inducible factor prolyl 4-hydroxylase-2 hypomorphic mice show protection against acute ischemia-reperfusion injury. J Biol Chem 285(18):13646–13657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Wei K, Piecewicz SM, McGinnis LM et al (2013) A liver Hif-2α-Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition. Nat Med 19(10):1331–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Heindryckx F, Kuchnio A, Casteleyn C, Coulon S, Olievier K, Colle I, Geerts A, Libbrecht L, Carmeliet P, Van Vlierberghe H (2012) Effect of prolyl hydroxylase domain-2 haplodeficiency on the hepatocarcinogenesis in mice. J Hepatol 57(1):61–68

    Article  CAS  PubMed  Google Scholar 

  118. Coulon S, Legry V, Heindryckx F et al (2013) Role of vascular endothelial growth factor in the pathophysiology of nonalcoholic steatohepatitis in two rodent models. Hepatology 57(5):1793–1805

    Article  CAS  PubMed  Google Scholar 

  119. Coulon C, Georgiadou M, Roncal C, De Bock K, Langenberg T, Carmeliet P (2010) From vessel sprouting to normalization: role of the prolyl hydroxylase domain protein/hypoxia-inducible factor oxygen-sensing machinery. Arterioscler Thromb Vasc Biol 30(12):2331–2336

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Margot Guillemin for her critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sander Lefere.

Ethics declarations

Financial support

S.L. and X.V. received a research Grant from the Fund for Scientific Research (FWO Flanders, FWO15/ASP/146 and 1700214N, respectively). H.V.V. is a senior clinical researcher of the FWO Flanders.

Conflict of interest

The authors declare no conflict of interest.

Additional information

L. Devisscher and A. Geerts contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lefere, S., Van Steenkiste, C., Verhelst, X. et al. Hypoxia-regulated mechanisms in the pathogenesis of obesity and non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 73, 3419–3431 (2016). https://doi.org/10.1007/s00018-016-2222-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2222-1

Keywords

Navigation