Skip to main content
Log in

Novel activity of KRAB domain that functions to reinforce nuclear localization of KRAB-containing zinc finger proteins by interacting with KAP1

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Previously, we found that two isoforms of the ZNF268 gene (ZNF268a and ZNF268b2, with and without the KRAB domain, respectively) might play distinct roles in normal epithelia and in cervical cancer. Here we further investigated that KRAB domain defined the function disparity in part by reinforcing nuclear localization of ZNF268a. We found that the A-box of KRAB alone retained major specific nuclear localization activity. In contrast, the B-box alone did not have nuclear localization activity but enhanced it significantly. Consistent with the critical function of the A-box, each mutation of six conserved residues (V9, V11, F13, E16, E17 and W18) in the A-box dramatically impaired nuclear localization activity. Furthermore, the unique nuclear localization activity of KRAB was verified in seven additional KRAB-containing zinc finger proteins (KRAB-ZFPs), suggesting that it is a universal feature of KRAB-ZFPs. Finally, KRAB exerted its unique nuclear localization activity by interacting with the RBCC domain of its corepressor KAP1. Our results have revealed a novel mechanism by which the KRAB domain reinforces nuclear localization of KRAB-ZFPs by interacting with KAP1. Our study also suggests that loss of the KRAB domain in KRAB-ZFPs due to aberrant alternative splicing might contribute to carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huntley S, Baggott DM, Hamilton AT, Tran-Gyamfi M, Yang S, Kim J, Gordon L, Branscomb E, Stubbs L (2006) A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res 16(5):669–677

    Article  PubMed  CAS  Google Scholar 

  2. Fernandez-Martinez J, Brown CV, Diez E, Tilburn J, Arst HN Jr, Penalva MA, Espeso EA (2003) Overlap of nuclear localisation signal and specific DNA-binding residues within the zinc finger domain of PacC. J Mol Biol 334(4):667–684

    Article  PubMed  CAS  Google Scholar 

  3. Pandya K, Townes TM (2002) Basic residues within the Kruppel zinc finger DNA binding domains are the critical nuclear localization determinants of EKLF/KLF-1. J Biol Chem 277(18):16304–16312

    Article  PubMed  CAS  Google Scholar 

  4. Matheny C, Day ML, Milbrandt J (1994) The nuclear localization signal of NGFI-A is located within the zinc finger DNA binding domain. J Biol Chem 269(11):8176–8181

    PubMed  CAS  Google Scholar 

  5. LaCasse EC, Lefebvre YA (1995) Nuclear localization signals overlap DNA- or RNA-binding domains in nucleic acid-binding proteins. Nucleic Acids Res 23(10):1647–1656

    Article  PubMed  CAS  Google Scholar 

  6. Vissing H, Meyer WK, Aagaard L, Tommerup N, Thiesen HJ (1995) Repression of transcriptional activity by heterologous KRAB domains present in zinc finger proteins. FEBS Lett 369(2–3):153–157

    Article  PubMed  CAS  Google Scholar 

  7. Mark C, Abrink M, Hellman L (1999) Comparative analysis of KRAB zinc finger proteins in rodents and man: evidence for several evolutionarily distinct subfamilies of KRAB zinc finger genes. DNA Cell Biol 18(5):381–396

    Article  PubMed  CAS  Google Scholar 

  8. Birtle Z, Ponting CP (2006) Meisetz and the birth of the KRAB motif. Bioinformatics 22(23):2841–2845

    Article  PubMed  CAS  Google Scholar 

  9. Urrutia R (2003) KRAB-containing zinc-finger repressor proteins. Genome Biol 4(10):231

    Article  PubMed  Google Scholar 

  10. Margolin JF, Friedman JR, Meyer WK, Vissing H, Thiesen HJ, Rauscher FJ 3rd (1994) Kruppel-associated boxes are potent transcriptional repression domains. Proc Natl Acad Sci U S A 91(10):4509–4513

    Article  PubMed  CAS  Google Scholar 

  11. Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG, Rauscher FJ 3rd (1996) KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 10(16):2067–2078

    Article  PubMed  CAS  Google Scholar 

  12. Wang W, Guo M, Hu L, Cai J, Zeng Y, Luo J, Shu Z, Li W, Huang Z (2012) The zinc finger protein ZNF268 is overexpressed in human cervical cancer and contributes to tumorigenesis via enhancing NF-kappaB signaling. J Biol Chem 287(51):42856–42866

    Article  PubMed  CAS  Google Scholar 

  13. Dai C, Cao Z, Wu Y, Yi H, Jiang D, Li W (2007) Improved fusion protein expression of EGFP via the mutation of both Kozak and the initial ATG codon. Cell Mol Biol Lett 12(3):362–369

    Article  PubMed  CAS  Google Scholar 

  14. Hu C, Zhang S, Gao X, Xu X, Lv Y, Zhang Y, Zhu Z, Zhang C, Li Q, Wong J, Cui Y, Zhang W, Ma L, Wang C (2012) Roles of Kruppel-associated box (KRAB)-associated co-repressor KAP1 Ser-473 phosphorylation in DNA damage response. J Biol Chem 287(23):18937–18952

    Article  PubMed  CAS  Google Scholar 

  15. Shao H, Zhu C, Zhao Z, Guo M, Qiu H, Liu H, Wang D, Xue L, Gao L, Sun C, Li W (2006) KRAB-containing zinc finger gene ZNF268 encodes multiple alternatively spliced isoforms that contain transcription regulatory domains. Int J Mol Med 18(3):457–463

    PubMed  CAS  Google Scholar 

  16. Peng H, Begg GE, Schultz DC, Friedman JR, Jensen DE, Speicher DW, Rauscher FJ 3rd (2000) Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein–protein interactions. J Mol Biol 295(5):1139–1162

    Article  PubMed  CAS  Google Scholar 

  17. Huang S, Chen J, Chen Q, Wang H, Yao Y, Chen Z (2013) A second CRM1-dependent nuclear export signal in the influenza A virus NS2 protein contributes to the nuclear export of viral ribonucleoproteins. J Virol 87(2):767–778

    Article  PubMed  CAS  Google Scholar 

  18. Shiota C, Coffey J, Grimsby J, Grippo JF, Magnuson MA (1999) Nuclear import of hepatic glucokinase depends upon glucokinase regulatory protein, whereas export is due to a nuclear export signal sequence in glucokinase. J Biol Chem 274(52):37125–37130

    Article  PubMed  CAS  Google Scholar 

  19. Mizuno T, Okamoto T, Yokoi M, Izumi M, Kobayashi A, Hachiya T, Tamai K, Inoue T, Hanaoka F (1996) Identification of the nuclear localization signal of mouse DNA primase: nuclear transport of p46 subunit is facilitated by interaction with p54 subunit. J Cell Sci 109(Pt 11):2627–2636

    PubMed  CAS  Google Scholar 

  20. Kalderon D, Richardson WD, Markham AF, Smith AE (1984) Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311(5981):33–38

    Article  PubMed  CAS  Google Scholar 

  21. Dingwall C, Sharnick SV, Laskey RA (1982) A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell 30(2):449–458

    Article  PubMed  CAS  Google Scholar 

  22. Iyengar S, Farnham PJ (2011) KAP1 protein: an enigmatic master regulator of the genome. J Biol Chem 286(30):26267–26276

    Article  PubMed  CAS  Google Scholar 

  23. Hung MC, Link W (2011) Protein localization in disease and therapy. J Cell Sci 124(Pt 20):3381–3392

    Article  PubMed  CAS  Google Scholar 

  24. Ayyanathan K, Lechner MS, Bell P, Maul GG, Schultz DC, Yamada Y, Tanaka K, Torigoe K, Rauscher FJ 3rd (2003) Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev 17(15):1855–1869

    Article  PubMed  CAS  Google Scholar 

  25. Sripathy SP, Stevens J, Schultz DC (2006) The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol Cell Biol 26(22):8623–8638

    Article  PubMed  CAS  Google Scholar 

  26. Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG, Lizyness ML, Kuick R, Hayasaka S, Taylor JM, Iannettoni MD, Orringer MB, Hanash S (2002) Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 8(8):816–824

    PubMed  CAS  Google Scholar 

  27. Wang C, Ivanov A, Chen L, Fredericks WJ, Seto E, Rauscher FJ 3rd, Chen J (2005) MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J 24(18):3279–3290

    Article  PubMed  CAS  Google Scholar 

  28. Yokoe T, Toiyama Y, Okugawa Y, Tanaka K, Ohi M, Inoue Y, Mohri Y, Miki C, Kusunoki M (2010) KAP1 is associated with peritoneal carcinomatosis in gastric cancer. Ann Surg Oncol 17(3):821–828

    Article  PubMed  Google Scholar 

  29. Okamoto K, Kitabayashi I, Taya Y (2006) KAP1 dictates p53 response induced by chemotherapeutic agents via Mdm2 interaction. Biochem Biophys Res Commun 351(1):216–222

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a National High Technology Research and Development Program of China (863 Program; grant no. 2006AA02A306 to W. Li), National Natural Science Foundation of China (grant nos. 30871245 and 31271511 to M. Guo, 81070406 to Z. Huang), and a Ph.D. Programs Foundation of Ministry of Education of China (grant no. 20110141110016 to Z. Huang), New Century Excellent Talents in University (NCET) of Ministry of Education of China (grant no. NCET-12-0422 to Z. Huang), Scientific Research Foundation for Returned Scholars of Ministry of Education of China (to Z. Huang).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingxiong Guo or Zan Huang.

Additional information

W. Wang and J. Cai contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3036 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Cai, J., Wu, Y. et al. Novel activity of KRAB domain that functions to reinforce nuclear localization of KRAB-containing zinc finger proteins by interacting with KAP1. Cell. Mol. Life Sci. 70, 3947–3958 (2013). https://doi.org/10.1007/s00018-013-1359-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1359-4

Keywords

Navigation