Skip to main content
Log in

Phylogenetic relationships of annelids, molluscs, and arthropods evidenced from molecules and morphology

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Annelids and arthropods have long been considered each other's closest relatives, as evidenced by similarities in their segmented body plans. An alternative view, more recently advocated by investigators who have examined partial 18S ribosomal RNA data, proposes that annelids, molluscs, and certain other minor phyla with trochophore larva stages share a more recent common ancestor with one another than any do with arthropods. The two hypotheses are mutually exclusive in explaining spiralian relationships. Cladistic analysis of morphological data does not reveal phylogentic relationships among major spiralian taxa but does suggest monophyly for both the annelids and molluscs. Distance and maximum-likelihood analyses of 18S rRNA gene sequences from major spiralian taxa suggest a sister relationship between annelids and molluscs and provide a clear resolution within the major groups of the spiralians. The parsimonious tree based on molecular data, however, indicates a sister relationship of the Annelida and Bivalvia, and an earlier divergence of the Gastropoda than the Annelida-Bivalvia clade. To test further hypotheses on the phylogenetic relationships among annelids, molluscs, and arthropods, and the ingroup relationships within the major spiralian taxa, we combine the molecular and morphological data sets and subject the combined data matrix to parsimony analysis. The resulting tree suggests that the molluscs and annelids form a monophyletic lineage and unites the molluscan taxa to a monophyletic group. Therefore, the result supports the Eutrochozoa hypothesis and the monophyly of molluscs, and indicates early acquisition of segmented body plans in arthropods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon Press, Oxford

    Google Scholar 

  • Barnes RD (1987) Invertebrate zoology. WB Saunders, Philadelphia

    Google Scholar 

  • Boore JL, Collins TM, Stanton D, Daehler LL, Brown WM (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376:163–165

    Article  CAS  PubMed  Google Scholar 

  • Boudreaux HB (1979) Arthropod phylogeny with special reference to insects. J. Wiley and Sons, New York

    Google Scholar 

  • Brinkhurst RO (1982) Evolution in the Annelida. Can J Zool 60:1043–1059

    Google Scholar 

  • Brinkhurst RO, Gelder SR (1991) Annelida: Oligochaeta and Branchiobdellida. In: Thorp JH, Covich AP (eds) Ecology and classification of North American freshwater invertebrates. Academic Press, New York, pp 401–435

    Google Scholar 

  • Brusca RC, Brusca GJ (1990) Invertebrates. Sinauer, Sunderland, MA

    Google Scholar 

  • Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL, Waddell PJ (1993) Partitioning and combining data in phylogenetic analysis. Syst Biol 42:384–397

    Google Scholar 

  • Dales RP (1967) Annelids. Hutchinson University Library, London

    Google Scholar 

  • De Queiroz A (1993) For consensus (sometimes). Syst Biol 42:368–372

    Google Scholar 

  • Eernisse DJ, Kluge AG (1993) Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. Mol Biol Evol 10:1170–1195

    CAS  PubMed  Google Scholar 

  • Eernisse DJ, Albert JS, Anderson FE (1992) Annelida and Arthropoda are not sister taxa: a phylogenetic analysis of spiralian metazoan morphology. Syst Biol 41:305–330

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Felsenstein J (1993) PHYLIP: phylogeny inference package, version 3.5c. University of Washington, Seattle

    Google Scholar 

  • Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 239:748–753

    CAS  PubMed  Google Scholar 

  • Gatesy J, DeSalle R, Wheeler WC (1993) Alignment-ambiguous nucleotide sites and the exclusion of systematic data. Mol Phylogen Evol 2:152–157

    CAS  Google Scholar 

  • Ghiselin MT (1988) The origin of molluscs in the light of molecular evidence. Oxf Surv Evol Biol 5:66–95

    Google Scholar 

  • Ghiselin MT (1989) Summary of our present knowledge of metazoan phylogeny. In: Fernholm B, Bremer K, Jornvall H (eds) The hierarchy of life. Elsevier Science BV, Amsterdam, pp 261–272

    Google Scholar 

  • Halanych KM, Bacheller JD, Aguinaldo AMA, Liva SM, Hillis DM, Lake JA (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267:1641–1643

    CAS  PubMed  Google Scholar 

  • Higgins DG, Bleasby AJ, Fuchs R (1992) CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191

    CAS  PubMed  Google Scholar 

  • Hillis DM (1991) Discriminating between phylogenetic signal and random noise in DNA sequences. In: Miyamoto MM, Cracraft J (eds) Phylogenetic analysis of DNA sequences. Oxford University Press, New York, pp 278–294

    Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Google Scholar 

  • Hillis DM, Huelsenbeck JP (1992) Signal, noise, and reliability in molecular phylogenetic analyses. J Hered 83:189–195

    CAS  PubMed  Google Scholar 

  • Holland PWH, Hacker AM, Williams NA (1991) A molecular analysis of the phylogenetic affinities ofSaccoglossus cambrensis Brambell & Cole (Hemichordata). Philos Trans R Soc Lond Biol 332:185–189

    CAS  PubMed  Google Scholar 

  • Hyman LH (1967) The invertebrates, vol 6. Mollusca 1. Aplacophora, Polyplacophora, Monoplacophora, Gastropoda. The Coelomate Bilateria. McGraw-Hill, New York

    Google Scholar 

  • Jamieson BGM (1988) On the phylogeny and higher classification of the Oligochaeta. Cladistics 4:367–410

    Google Scholar 

  • Jones TR, Kluge AG, Wolf AJ (1993) When the theories and methodologies clash: a phylogenetic reanalysis of the North American ambystomatid salamanders (Caudata: Ambystomatidae). Syst Biol 42:92–102

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kluge AG (1989) A concern for evidence and a phylogenetic hypothesis of relationships amongEpicrates (Boidae, Serpentes). Syst Zool 38:7–25

    Google Scholar 

  • Kozloff EN (1990) Invertebrates. WB Saunders, Philadelphia

    Google Scholar 

  • Kristensen NP (1975) The phylogeny of hexapod “orders”. A critical review of recent accounts. Z Zool Evol Forch 13:1–44

    Google Scholar 

  • Kumar S, Tamura K, Nei M (1993) MEGA: molecular evolutionary genetics analysis, version 1.01. Pennsylvania State University,University Park

    Google Scholar 

  • Lake JA (1987) A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol 4:167–191

    CAS  PubMed  Google Scholar 

  • Lake JA (1990) Origin of the Metazoa. Proc Natl Acad Sci USA 87:763–766

    CAS  PubMed  Google Scholar 

  • Mangum CP (1985) Oxygen transport in invertebrates. Am J Physiol 248:505–514

    Google Scholar 

  • Manton SM (1977) The Arthropoda: habits, functional morphology, and evolution. Clarendon Press, Oxford

    Google Scholar 

  • Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA coding regions. Gene 71:491–499

    Article  CAS  PubMed  Google Scholar 

  • Meglitsch PA, Schram FR (1991) Invertebrate zoology. Oxford University Press, New York

    Google Scholar 

  • Mettam C (1985) Functional constraints in the evolution of the Annelida. In: Morris SC, Geoge JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates, vol 28. Syst Assoc Spec, Oxford, pp 297–309

    Google Scholar 

  • Moon SY, Kim CB, Gelder SR, Kim W (1996) Phylogenetic positions of the aberrant branchiobdellidans and aphanoneurans within the Annelida as derived from 18S ribosomal RNA gene sequences. Hydrobiol (in press)

  • Patterson C (1989) Phylogenetic relations of major groups: conclusions and prospects. In: Fernholm B, Bremer K, Jornvall H (eds) The hierarchy of life. Elsevier Science BV, Amsterdam, pp 471–488

    Google Scholar 

  • Paulus HF (1979) Eye structure and the monophyly of Arthropoda. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand, New York, pp 299–383

    Google Scholar 

  • Pettibone MH (1982) Annelida. In: Parker SP (ed) Synopsis and classification of living organisms, vol. 2. McGraw-Hill, New York, pp 1–61

    Google Scholar 

  • Raff RA, Field KG, Olsen GJ, Giovannoni SJ, Lane DJ, Ghiselin MT, Pace NR, Raff EC (1989) Metazoan phylogeny based on analysis of 18S ribosomal RNA. In: Fernholm B, Bremer K, Jornvall H (eds) The hierarchy of life. Elsevier Sciences BV, Amsterdam, pp 247–260

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-termination inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    CAS  PubMed  Google Scholar 

  • Schram FR (1986) Crustacea. Oxford University Press, New York

    Google Scholar 

  • Swofford DL (1990) PAUP: phylogenetic analysis using parsimony, version 3.0. Illinois Natural History Survey, Champaign, Il

    Google Scholar 

  • Templeton A (1983) Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and apes. Evolution 37:221–244

    CAS  Google Scholar 

  • Turbeville JM, Schulz JR, Raff RA (1994) Deuterostome phylogeny and the sister group of the chordates: evidence from molecules and morphology. Mol Biol Evol 11:648–655

    CAS  PubMed  Google Scholar 

  • Weygoldt P (1986) Arthropod interrelationships—the phylogenetic-systematic approach. Z Zool Syst Evol 24:19–35

    Google Scholar 

  • Weygoldt P, Paulus HF (1979) Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. II. Cladogramme und die Enfaltung der Chelicerata. Z Zool Syst Evol 17:117–200

    Google Scholar 

  • Wheeler WC, Cartwright P, Hayashi CY (1993) Arthropod phylogeny: a combined approach. Cladistics 9:1–39

    Article  Google Scholar 

  • Winnepenninckx B, Backeljau T, De Wachter R (1995) Phylogeny of protostome worms derived from 18S rRNA sequences. Mol Biol Evol 12:641–649

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: W. Kim

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C.B., Moon, S.Y., Gelder, S.R. et al. Phylogenetic relationships of annelids, molluscs, and arthropods evidenced from molecules and morphology. J Mol Evol 43, 207–215 (1996). https://doi.org/10.1007/BF02338828

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02338828

Key words

Navigation