Skip to main content
Log in

Natural supersymmetry at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

If the minimal supersymmetric standard model is the solution to the hierarchy problem, the scalar top quark (stop) and the Higgsino should weigh around the electroweak scale such as 200GeV. A low messenger scale, which results in a light gravitino, is also suggested to suppress the quantum corrections to the Higgs mass parameters. Therefore the minimal model for natural supersymmetry is a system with stop/Higgsino/gravitino whereas other superparticles are heavy. We study the LHC signatures of the minimal system and discuss the discovery potential and methods for the mass measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. ATLAS collaboration, ATLAS detector and physics performance: technical design report 1, CERN-LHCC-99-014 [SPIRES].

  2. TLAS collaboration, ATLAS detector and physics performance: technical design report 2, CERN-LHCC-99-015 [SPIRES].

  3. CMS collaboration, S. Abdullin et al., Discovery potential for supersymmetry in CMS, J. Phys. G 28 (2002) 469 [hep-ph/9806366] [SPIRES].

    ADS  Google Scholar 

  4. LHC/LC Study Group collaboration, G. Weiglein et al., Physics interplay of the LHC and the ILC, Phys. Rept. 426 (2006) 47 [hep-ph/0410364] [SPIRES].

    Article  ADS  Google Scholar 

  5. R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [SPIRES].

    ADS  Google Scholar 

  6. Z. Chacko, Y. Nomura and D. Tucker-Smith, A minimally fine-tuned supersymmetric standard model, Nucl. Phys. B 725 (2005) 207 [hep-ph/0504095] [SPIRES].

    Article  ADS  Google Scholar 

  7. Y. Nomura and B. Tweedie, The supersymmetric fine-tuning problem and TeV-scale exotic scalars, Phys. Rev. D 72 (2005) 015006 [hep-ph/0504246] [SPIRES].

    ADS  Google Scholar 

  8. LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].

    ADS  Google Scholar 

  9. R. Kitano and Y. Nomura, A solution to the supersymmetric fine-tuning problem within the MSSM, Phys. Lett. B 631 (2005) 58 [hep-ph/0509039] [SPIRES].

    ADS  Google Scholar 

  10. R. Dermisek and H.D. Kim, Radiatively generated maximal mixing scenario for the Higgs mass and the least fine tuned minimal supersymmetric standard model, Phys. Rev. Lett. 96 (2006) 211803 [hep-ph/0601036] [SPIRES].

    Article  ADS  Google Scholar 

  11. R. Dermisek, H.D. Kim and I.-W. Kim, Mediation of supersymmetry breaking in gauge messenger models, JHEP 10 (2006) 001 [hep-ph/0607169] [SPIRES].

    Article  ADS  Google Scholar 

  12. M.S. Carena, M. Quirós and C.E.M. Wagner, Effective potential methods and the Higgs mass spectrum in the MSSM, Nucl. Phys. B 461 (1996) 407 [hep-ph/9508343] [SPIRES].

    Article  ADS  Google Scholar 

  13. H.E. Haber, R. Hempfling and A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C 75 (1997) 539 [hep-ph/9609331] [SPIRES].

    Google Scholar 

  14. K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski and S. Pokorski, Stability of flux compactifications and the pattern of supersymmetry breaking, JHEP 11 (2004) 076 [hep-th/0411066] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  15. K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Endo, M. Yamaguchi and K. Yoshioka, A bottom-up approach to moduli dynamics in heavy gravitino scenario: superpotential, soft terms and sparticle mass spectrum, Phys. Rev. D 72 (2005) 015004 [hep-ph/0504036] [SPIRES].

    ADS  Google Scholar 

  17. K. Choi, K.S. Jeong and K.-i. Okumura, Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models, JHEP 09 (2005) 039 [hep-ph/0504037] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  18. J. Alwall, J.L. Feng, J. Kumar and S. Su, Dark matter-motivated searches for exotic 4th generation quarks in Tevatron and early LHC data, Phys. Rev. D 81 (2010) 114027 [arXiv:1002.3366] [SPIRES].

    ADS  Google Scholar 

  19. C.-L. Chou and M.E. Peskin, Scalar top quark as the next-to-lightest supersymmetric particle, Phys. Rev. D 61 (2000) 055004 [hep-ph/9909536] [SPIRES].

    ADS  Google Scholar 

  20. A.G. Cohen, D.B. Kaplan and A.E. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [SPIRES].

    ADS  Google Scholar 

  21. M. Perelstein and C. Spethmann, A collider signature of the supersymmetric golden region, JHEP 04 (2007) 070 [hep-ph/0702038] [SPIRES].

    Article  ADS  Google Scholar 

  22. G.F. Giudice, M. Nardecchia and A. Romanino, Hierarchical soft terms and flavor physics, Nucl. Phys. B 813 (2009) 156 [arXiv:0812.3610] [SPIRES].

    Article  ADS  Google Scholar 

  23. R. Sundrum, SUSY splits, but then returns, arXiv:0909.5430 [SPIRES].

  24. O. Aharony, L. Berdichevsky, M. Berkooz, Y. Hochberg and D. Robles-Llana, Inverted sparticle hierarchies from natural particle hierarchies, Phys. Rev. D 81 (2010) 085006 [arXiv:1001.0637] [SPIRES].

    ADS  Google Scholar 

  25. R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A non standard supersymmetric spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256] [SPIRES].

    Article  ADS  Google Scholar 

  26. M. Redi and B. Gripaios, Partially supersymmetric composite Higgs models, JHEP 08 (2010) 116 [arXiv:1004.5114] [SPIRES].

    Article  ADS  Google Scholar 

  27. H. Baer, S. Kraml, A. Lessa, S. Sekmen and X. Tata, Effective supersymmetry at the LHC, JHEP 10 (2010) 018 [arXiv:1007.3897] [SPIRES].

    Article  ADS  Google Scholar 

  28. M.L. Graesser, R. Kitano and M. Kurachi, Higgsinoless supersymmetry and hidden gravity, JHEP 10 (2009) 077 [arXiv:0907.2988] [SPIRES].

    Article  ADS  Google Scholar 

  29. Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [SPIRES].

    Article  ADS  Google Scholar 

  30. J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [SPIRES].

    ADS  Google Scholar 

  31. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m (Z)?, Phys. Rev. Lett. 66 (1991) 1815 [SPIRES].

    Article  ADS  Google Scholar 

  32. CDF and D0 collaboration and others, Combination of CDF and D0 results on the mass of the top quark, arXiv:1007.3178 [SPIRES].

  33. M. Dine, W. Fischler and M. Srednicki, Supersymmetric technicolor, Nucl. Phys. B 189 (1981) 575 [SPIRES].

    Article  ADS  Google Scholar 

  34. S. Dimopoulos and S. Raby, Supercolor, Nucl. Phys. B 192 (1981) 353 [SPIRES].

    Article  ADS  Google Scholar 

  35. M. Dine and W. Fischler, A phenomenological model of particle physics based on supersymmetry, Phys. Lett. B 110 (1982) 227 [SPIRES].

    ADS  Google Scholar 

  36. M. Dine and W. Fischler, A supersymmetric GUT, Nucl. Phys. B 204 (1982) 346 [SPIRES].

    Article  ADS  Google Scholar 

  37. C.R. Nappi and B.A. Ovrut, Supersymmetric extension of the SU(3) × SU(2) × U(1) model, Phys. Lett. B 113 (1982) 175 [SPIRES].

    ADS  Google Scholar 

  38. L. Álvarez-Gaumé, M. Claudson and M.B. Wise, Low-energy supersymmetry, Nucl. Phys. B 207 (1982) 96 [SPIRES].

    Article  ADS  Google Scholar 

  39. S. Dimopoulos and S. Raby, Geometric hierarchy, Nucl. Phys. B 219 (1983) 479 [SPIRES].

    Article  ADS  Google Scholar 

  40. M. Dine and A.E. Nelson, Dynamical supersymmetry breaking at low-energies, Phys. Rev. D 48 (1993) 1277 [hep-ph/9303230] [SPIRES].

    ADS  Google Scholar 

  41. M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [SPIRES].

    ADS  Google Scholar 

  42. M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, Phys. Rev. D 51 (1995) 1362 [hep-ph/9408384] [SPIRES].

    ADS  Google Scholar 

  43. P. Meade and M. Reece, Top partners at the LHC: spin and mass measurement, Phys. Rev. D 74 (2006) 015010 [hep-ph/0601124] [SPIRES].

    ADS  Google Scholar 

  44. P. Meade, M. Reece and D. Shih, Long-lived neutralino NLSPs, JHEP 10 (2010) 067 [arXiv:1006.4575] [SPIRES].

    Article  ADS  Google Scholar 

  45. F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: a Monte Carlo event generator for pp, \( \bar{p}p \) and e + e reactions, hep-ph/0312045 [SPIRES].

  46. G. Corcella et al., HERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].

    Article  ADS  Google Scholar 

  47. G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [SPIRES].

  48. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].

    Article  ADS  Google Scholar 

  49. E. Richter-Was, AcerDET: A particle level fast simulation and reconstruction package for phenomenological studies on high p T physics at LHC, hep-ph/0207355 [SPIRES].

  50. I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [SPIRES].

    ADS  Google Scholar 

  51. C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [SPIRES].

    ADS  Google Scholar 

  52. K. Hamaguchi, E. Nakamura and S. Shirai, A measurement of neutralino mass at the LHC in light gravitino scenarios, Phys. Lett. B 666 (2008) 57 [arXiv:0805.2502] [SPIRES].

    ADS  Google Scholar 

  53. H. Baer, P.G. Mercadante, X. Tata and Y.-l. Wang, The reach of the CERN Large Hadron Collider for gauge mediated supersymmetry breaking models, Phys. Rev. D 62 (2000) 095007 [hep-ph/0004001] [SPIRES].

    ADS  Google Scholar 

  54. P. Meade, M. Reece and D. Shih, Prompt decays of general neutralino NLSPs at the Tevatron, JHEP 05 (2010) 105 [arXiv:0911.4130] [SPIRES].

    Article  ADS  Google Scholar 

  55. G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering the Higgs boson in new physics events using jet substructure, Phys. Rev. D 81 (2010) 111501 [arXiv:0912.4731] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Asano.

Additional information

ArXiv ePrint: 1010.0692

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asano, M., Kim, H.D., Kitano, R. et al. Natural supersymmetry at the LHC. J. High Energ. Phys. 2010, 19 (2010). https://doi.org/10.1007/JHEP12(2010)019

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2010)019

Keywords

Navigation