Skip to main content
Log in

Chemical potentials in three-dimensional higher spin anti-de Sitter gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We indicate how to introduce chemical potentials for higher spin charges in higher spin anti-de Sitter gravity in a manner that manifestly preserves the original asymptotic W-symmetry. This is done by switching on a non-vanishing component of the connection along the temporal (thermal) circles. We first recall the procedure in the pure gravity case (no higher spin) where the only “chemical potentials” are the temperature and the chemical potential associated with the angular momentum. We then generalize to the higher spin case. We find that there is no tension with the W N or W asymptotic algebra, which is obviously unchanged by the introduction of the chemical potentials. Our argument is not perturbative in the chemical potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Vasiliev, Extended Higher Spin Superalgebras and Their Realizations in Terms of Quantum Operators, Fortsch. Phys. 36 (1988) 33 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Blencowe, A Consistent Interacting Massless Higher Spin Field Theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. E. Bergshoeff, M. Blencowe and K. Stelle, Area Preserving Diffeomorphisms and Higher Spin Algebra, Commun. Math. Phys. 128 (1990) 213 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. E. Fradkin and M.A. Vasiliev, On the Gravitational Interaction of Massless Higher Spin Fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS d , Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  8. M. Henneaux and S.-J. Rey, Nonlinear W as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  9. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. M. Henneaux, G. Lucena Gomez, J. Park and S.-J. Rey, Super-W Asymptotic Symmetry of Higher-Spin AdS 3 Supergravity, JHEP 06 (2012) 037 [arXiv:1203.5152] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M.R. Gaberdiel, R. Gopakumar and A. Saha, Quantum W -symmetry in AdS 3, JHEP 02 (2011) 004 [arXiv:1009.6087] [INSPIRE].

    ADS  MATH  Google Scholar 

  12. M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  13. M.R. Gaberdiel and T. Hartman, Symmetries of Holographic Minimal Models, JHEP 05 (2011) 031 [arXiv:1101.2910] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  15. A. Achucarro and P. Townsend, A Chern-Simons Action for Three-Dimensional anti-de Sitter Supergravity Theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [INSPIRE].

  18. V. Drinfeld and V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, J. Sov. Math. 30 (1984) 1975 [INSPIRE].

    Article  Google Scholar 

  19. P. Forgacs, A. Wipf, J. Balog, L. Feher and L. O’Raifeartaigh, Liouville and Toda Theories as Conformally Reduced WZNW Theories, Phys. Lett. B 227 (1989) 214 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. L. Feher, L. O’Raifeartaigh, P. Ruelle, I. Tsutsui and A. Wipf, On Hamiltonian reductions of the Wess-Zumino-Novikov-Witten theories, Phys. Rept. 222 (1992) 1 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. J. de Boer and T. Tjin, The relation between quantum W algebras and Lie algebras, Commun. Math. Phys. 160 (1994) 317 [hep-th/9302006] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. M. Bañados, K. Bautier, O. Coussaert, M. Henneaux and M. Ortiz, Anti-de Sitter/CFT correspondence in three-dimensional supergravity, Phys. Rev. D 58 (1998) 085020 [hep-th/9805165] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. M. Henneaux, L. Maoz and A. Schwimmer, Asymptotic dynamics and asymptotic symmetries of three-dimensional extended AdS supergravity, Annals Phys. 282 (2000) 31 [hep-th/9910013] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. M. Gutperle and P. Kraus, Higher Spin Black Holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime Geometry in Higher Spin Gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Black holes in three dimensional higher spin gravity: A review, J. Phys. A 46 (2013) 214001 [arXiv:1208.5182] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  28. A. Castro, E. Hijano, A. Lepage-Jutier and A. Maloney, Black Holes and Singularity Resolution in Higher Spin Gravity, JHEP 01 (2012) 031 [arXiv:1110.4117] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. J. de Boer and J.I. Jottar, Thermodynamics of Higher Spin Black Holes in AdS 3, arXiv:1302.0816 [INSPIRE].

  30. C. Bunster, M. Henneaux, A. Pérez, D. Tempo and R. Troncoso, Generalized Black Holes in Three-dimensional Spacetime, preprint CECS-PHY-13/07.

  31. R. Troncoso, Higher Spin Black Holes, talk given at The 7th Aegean Summer School on Beyond Einsteins Theory of Gravity, Parikia, Island of Paros, 23-28 September 2013.

  32. A. Pérez, D. Tempo and R. Troncoso, Higher spin gravity in 3D: Black holes, global charges and thermodynamics, Phys. Lett. B 726 (2013) 444 [arXiv:1207.2844] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. A. Pérez, D. Tempo and R. Troncoso, Higher spin black hole entropy in three dimensions, JHEP 04 (2013) 143 [arXiv:1301.0847] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. M. Bañados, R. Canto and S. Theisen, The action for higher spin black holes in three dimensions, JHEP 07 (2012) 147 [arXiv:1204.5105] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].

    ADS  Google Scholar 

  37. T. Regge and C. Teitelboim, Role of Surface Integrals in the Hamiltonian Formulation of General Relativity, Annals Phys. 88 (1974) 286 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. G. Compère and W. Song, \( \mathcal{W} \) symmetry and integrability of higher spin black holes, JHEP 09 (2013) 144 [arXiv:1306.0014] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. G. Compère, J.I. Jottar and W. Song, Observables and Microscopic Entropy of Higher Spin Black Holes, JHEP 11 (2013) 054 [arXiv:1308.2175] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Pérez.

Additional information

ArXiv ePrint: 1309.4362

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henneaux, M., Pérez, A., Tempo, D. et al. Chemical potentials in three-dimensional higher spin anti-de Sitter gravity. J. High Energ. Phys. 2013, 48 (2013). https://doi.org/10.1007/JHEP12(2013)048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)048

Keywords

Navigation