Skip to main content
Log in

Total cross-section for Higgs boson hadroproduction with anomalous Standard-Model interactions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a new program (iHixs) which computes the inclusive Higgs boson cross-section at hadron colliders. It incorporates QCD corrections through NNLO, real and virtual electroweak corrections, mixed QCD-electroweak corrections, quark-mass effects through NLO in QCD, and finite width effects for the Higgs boson and heavy quarks. iHixs can be used to obtain the most precise cross-section values in fixed order perturbation theory in the Standard Model. In addition, it allows for a consistent evaluation of the cross-section in modified Higgs boson sectors with anomalous Yukawa and electroweak interactions as required in extensions of the Standard Model. iHixs is interfaced with the LHAPDF library and can be used with all available NNLO sets of parton distribution functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LEP Working Group for Higgs boson searches and ALEPH, DELPHI L3, OPAL collaborations, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

    ADS  Google Scholar 

  2. CDF and D0 collaborations, T. Aaltonen et al., Combined CDF and D0 upper limits on standard model Higgs boson production with up to 8.2 fb −1 of data, arXiv:1103.3233 [INSPIRE].

  3. ATLAS collaboration, G. Aad et al., Limits on the production of the standard model Higgs boson in pp collisions at \( \sqrt {s} = 7\,TeV \) TeV with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1728 [arXiv:1106.2748] [INSPIRE].

    Article  ADS  Google Scholar 

  4. CMS collaboration, S. Chatrchyan et al., Measurement of W + W production and search for the Higgs boson in pp collisions at \( \sqrt {s} = 7\,TeV \), Phys. Lett. B 699 (2011) 25 [arXiv:1102.5429] [INSPIRE].

    ADS  Google Scholar 

  5. W.J. Marciano, Constraints and speculations on fourth generation physics, Annals N. Y. Acad. Sci. 518 (1987) 180 [INSPIRE].

    Article  ADS  Google Scholar 

  6. C.T. Hill, Theoretical expectations for mass scales of the fourth generation and Higgs bosons, Annals N. Y. Acad. Sci. 518 (1987) 168 [INSPIRE].

    Article  ADS  Google Scholar 

  7. E.W.N. Glover, J. Ohnemus and S.S.D. Willenbrock, The intermediate mass Higgs boson and the fourth generation, Phys. Lett. B 206 (1988) 696 [INSPIRE].

    ADS  Google Scholar 

  8. V.D. Barger et al., Higgs boson Z0 associated production from fourth generation quarks at super collider energies, Phys. Rev. Lett. 57 (1986) 1672 [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Falkowski, Pseudo-goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [INSPIRE].

    ADS  Google Scholar 

  10. G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  11. E. Furlan, Gluon-fusion Higgs production at NNLO for a non-standard Higgs sector, JHEP 10 (2011) 115 [arXiv:1106.4024] [INSPIRE].

    Article  ADS  Google Scholar 

  12. T.P. Cheng and M. Sher, Mass matrix ansatz and flavor nonconservation in models with multiple Higgs doublets, Phys. Rev. D 35 (1987) 3484 [INSPIRE].

    ADS  Google Scholar 

  13. K.S. Babu and S. Nandi, Natural fermion mass hierarchy and new signals for the Higgs boson, Phys. Rev. D 62 (2000) 033002 [hep-ph/9907213] [INSPIRE].

    ADS  Google Scholar 

  14. G.F. Giudice and O. Lebedev, Higgs-dependent Yukawa couplings, Phys. Lett. B 665 (2008) 79 [arXiv:0804.1753] [INSPIRE].

    ADS  Google Scholar 

  15. J.J. van der Bij and S. Dilcher, HEIDI and the unparticle, Phys. Lett. B 655 (2007) 183 [arXiv:0707.1817] [INSPIRE].

    ADS  Google Scholar 

  16. J.J. van der Bij and B. Pulice, New spectra in the HEIDI Higgs models, Nucl. Phys. B 853 (2011) 49 [arXiv:1104.2062] [INSPIRE].

    ADS  Google Scholar 

  17. H. Georgi, Unparticle physics, Phys. Rev. Lett. 98 (2007) 221601 [hep-ph/0703260] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Buehler and C. Duhr, CHAPLIN — complex harmonic polylogarithms in Fortran, arXiv:1106.5739 [INSPIRE].

  19. A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP 09 (2009) 106 [arXiv:0903.4665] [INSPIRE].

    Article  ADS  Google Scholar 

  21. R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].

    Article  ADS  Google Scholar 

  22. http://hepforge.cedar.ac.uk/lhapdf/.

  23. S. Alekhin, J. Blumlein, S. Klein and S. Moch, The 3, 4 and 5-flavor NNLO parton from deep-inelastic-scattering data and at hadron colliders, Phys. Rev. D 81 (2010) 014032 [arXiv:0908.2766] [INSPIRE].

    ADS  Google Scholar 

  24. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  25. P. Jimenez-Delgado and E. Reya, Variable flavor number parton distributions and weak gauge and Higgs boson production at hadron colliders at NNLO of QCD, Phys. Rev. D 80 (2009) 114011 [arXiv:0909.1711] [INSPIRE].

    ADS  Google Scholar 

  26. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  27. D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].

    ADS  Google Scholar 

  31. R. Harlander and P. Kant, Higgs production and decay: analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].

    Article  ADS  Google Scholar 

  32. C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].

    Article  ADS  Google Scholar 

  33. U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay, JHEP 01 (2007) 021 [hep-ph/0611266] [INSPIRE].

    Article  ADS  Google Scholar 

  34. R.K. Ellis, I. Hinchliffe, M. Soldate and J.J. van der Bij, Higgs decay to τ + τ : a possible signature of intermediate mass Higgs bosons at the SSC, Nucl. Phys. B 297 (1988) 221 [INSPIRE].

    Article  ADS  Google Scholar 

  35. U. Baur and E.W.N. Glover, Higgs boson production at large transverse momentum in hadronic collisions, Nucl. Phys. B 339 (1990) 38 [INSPIRE].

    Article  ADS  Google Scholar 

  36. R. Bonciani, G. Degrassi and A. Vicini, Scalar particle contribution to Higgs production via gluon fusion at NLO, JHEP 11 (2007) 095 [arXiv:0709.4227] [INSPIRE].

    Article  ADS  Google Scholar 

  37. C. Anastasiou, S. Bucherer and Z. Kunszt, HPro: a NLO Monte-Carlo for Higgs production via gluon fusion with finite heavy quark masses, JHEP 10 (2009) 068 [arXiv:0907.2362] [INSPIRE].

    Article  ADS  Google Scholar 

  38. C. Anastasiou, R. Boughezal and E. Furlan, The NNLO gluon fusion Higgs production cross-section with many heavy quarks, JHEP 06 (2010) 101 [arXiv:1003.4677] [INSPIRE].

    Article  ADS  Google Scholar 

  39. K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order \( \alpha_s^4 \), Phys. Rev. Lett. 79 (1997) 353 [hep-ph/9705240] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].

    Article  ADS  Google Scholar 

  41. R.V. Harlander and W.B. Kilgore, Soft and virtual corrections to proton proton → H + x at NNLO, Phys. Rev. D 64 (2001) 013015 [hep-ph/0102241] [INSPIRE].

    ADS  Google Scholar 

  42. S. Catani, D. de Florian and M. Grazzini, Higgs production in hadron collisions: soft and virtual QCD corrections at NNLO, JHEP 05 (2001) 025 [hep-ph/0102227] [INSPIRE].

    Article  ADS  Google Scholar 

  43. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

    Article  ADS  Google Scholar 

  44. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

    Article  ADS  Google Scholar 

  45. V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].

    Article  ADS  Google Scholar 

  46. S. Actis, G. Passarino, C. Sturm and S. Uccirati, NNLO computational techniques: the cases H→γγ and H→gg, Nucl. Phys. B 811 (2009) 182 [arXiv:0809.3667] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO electroweak corrections to Higgs boson production at hadron colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [INSPIRE].

    ADS  Google Scholar 

  48. U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two loop light fermion contribution to Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [INSPIRE].

    ADS  Google Scholar 

  49. W.-Y. Keung and F.J. Petriello, Electroweak and finite quark-mass effects on the Higgs boson transverse momentum distribution, Phys. Rev. D 80 (2009) 013007 [arXiv:0905.2775] [INSPIRE].

    ADS  Google Scholar 

  50. C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003 [arXiv:0811.3458] [INSPIRE].

    Article  ADS  Google Scholar 

  51. J.M. Campbell et al., Higgs boson production in association with bottom quarks, hep-ph/0405302 [INSPIRE].

  52. S. Dittmaier, M. Krämer and M. Spira, Higgs radiation off bottom quarks at the Tevatron and the CERN LHC, Phys. Rev. D 70 (2004) 074010 [hep-ph/0309204] [INSPIRE].

    ADS  Google Scholar 

  53. S. Dawson, C.B. Jackson, L. Reina and D. Wackeroth, Exclusive Higgs boson production with bottom quarks at hadron colliders, Phys. Rev. D 69 (2004) 074027 [hep-ph/0311067] [INSPIRE].

    ADS  Google Scholar 

  54. D. Dicus, T. Stelzer, Z. Sullivan and S. Willenbrock, Higgs boson production in association with bottom quarks at next-to-leading order, Phys. Rev. D 59 (1999) 094016 [hep-ph/9811492] [INSPIRE].

    ADS  Google Scholar 

  55. E. Boos and T. Plehn, Higgs boson production induced by bottom quarks, Phys. Rev. D 69 (2004) 094005 [hep-ph/0304034] [INSPIRE].

    ADS  Google Scholar 

  56. F. Maltoni, Z. Sullivan and S. Willenbrock, Higgs-boson production via bottom-quark fusion, Phys. Rev. D 67 (2003) 093005 [hep-ph/0301033] [INSPIRE].

    ADS  Google Scholar 

  57. R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].

    ADS  Google Scholar 

  58. http://particle.uni-wuppertal.de/harlander/software/bbh@nnlo/.

  59. M. Beneke, A.P. Chapovsky, A. Signer and G. Zanderighi, Effective theory calculation of resonant high-energy scattering, Nucl. Phys. B 686 (2004) 205 [hep-ph/0401002] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: technical details and further results, Nucl. Phys. B 724 (2005) 247 [hep-ph/0505042] [INSPIRE].

    Article  ADS  Google Scholar 

  61. G. Zanderighi, Effective theory approach to unstable particles, hep-ph/0405124 [INSPIRE].

  62. E.W.N. Glover and J.J. van der Bij, Z boson pair production via gluon fusion, Nucl. Phys. B 321 (1989) 561 [INSPIRE].

    Article  ADS  Google Scholar 

  63. E.W.N. Glover and J.J. van der Bij, Vector boson pair production via gluon fusion, Phys. Lett. B 219 (1989) 488 [INSPIRE].

    ADS  Google Scholar 

  64. U. Baur and E.W.N. Glover, Z boson pair production via vector boson scattering and the search for the Higgs boson at hadron supercolliders, Nucl. Phys. B 347 (1990) 12 [INSPIRE].

  65. G. Valencia and S. Willenbrock, The heavy Higgs resonance, Phys. Rev. D 46 (1992) 2247 [INSPIRE].

    ADS  Google Scholar 

  66. M.H. Seymour, The Higgs boson line shape and perturbative unitarity, Phys. Lett. B 354 (1995) 409 [hep-ph/9505211] [INSPIRE].

    ADS  Google Scholar 

  67. G. Passarino, C. Sturm and S. Uccirati, Higgs pseudo-observables, second Riemann sheet and all that, Nucl. Phys. B 834 (2010) 77 [arXiv:1001.3360] [INSPIRE].

    Article  ADS  Google Scholar 

  68. S. Alekhin, J. Blumlein, P. Jimenez-Delgado, S. Moch and E. Reya, NNLO benchmarks for gauge and Higgs boson production at TeV hadron colliders, Phys. Lett. B 697 (2011) 127 [arXiv:1011.6259] [INSPIRE].

    ADS  Google Scholar 

  69. C. Anastasiou, S. Buehler, E. Furlan, F. Herzog and A. Lazopoulos, Higgs production cross-section in a standard model with four generations at the LHC, Phys. Lett. B 702 (2011) 224 [arXiv:1103.3645] [INSPIRE].

    ADS  Google Scholar 

  70. R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [INSPIRE].

    Article  ADS  Google Scholar 

  71. A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].

    Article  ADS  Google Scholar 

  72. ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment: detector, trigger and physics, CERN-OPEN-2008-020 [arXiv:0901.0512] [INSPIRE].

  73. D. de Florian and M. Grazzini, Higgs production through gluon fusion: updated cross sections at the Tevatron and the LHC, Phys. Lett. B 674 (2009) 291 [arXiv:0901.2427] [INSPIRE].

    ADS  Google Scholar 

  74. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Updated predictions for Higgs production at the Tevatron and the LHC, Phys. Lett. B 698 (2011) 271 [arXiv:1008.3162] [INSPIRE].

    ADS  Google Scholar 

  75. J. Baglio and A. Djouadi, Higgs production at the LHC, JHEP 03 (2011) 055 [arXiv:1012.0530] [INSPIRE].

    Article  ADS  Google Scholar 

  76. S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [INSPIRE].

    ADS  Google Scholar 

  77. S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [INSPIRE].

    Article  ADS  Google Scholar 

  78. T. Hahn, CUBA: a library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  79. M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].

  80. O. Brein, Electroweak and bottom quark contributions to Higgs boson plus jet production, Phys. Rev. D 81 (2010) 093006 [arXiv:1003.4438] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Buehler.

Additional information

ArXiv ePrint: 1107.0683

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anastasiou, C., Buehler, S., Herzog, F. et al. Total cross-section for Higgs boson hadroproduction with anomalous Standard-Model interactions. J. High Energ. Phys. 2011, 58 (2011). https://doi.org/10.1007/JHEP12(2011)058

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)058

Keywords

Navigation