Skip to main content
Log in

Three-dimensional \( \mathcal{N} = 2 \) (AdS) supergravity and associated supercurrents

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Long ago, Achúcarro and Townsend discovered that in three dimensions (3D) \( \mathcal{N} \) -extended anti-de Sitter (AdS) supergravity exists in several incarnations, which were called the (p, q) AdS supergravity theories with non-negative integers p ≥ q such that \( \mathcal{N} = p + q \). Using the superspace approach to 3D \( \mathcal{N} \)-extended supergravity developed in arXiv:1101.4013, we present three superfield formulations for \( \mathcal{N} = 2 \) supergravity that allow for well defined cosmological terms and supersymmetric AdS solutions. The conformal compensators corresponding to these theories are respectively: (i) a chiral scalar multiplet; (ii) a vector multiplet; and (iii) an improved complex linear multiplet. The theories corresponding to (i) and (iii) are shown to provide two dually equivalent realizations of the (1,1) AdS supergravity, while (ii) describes the (2,0) AdS supergravity. We associate with each supergravity formulation, with and without a cosmological term, a consistent super-current multiplet. The supercurrents in the (1,1) and (2,0) AdS backgrounds are derived for the first time. We elaborate on rigid supersymmetric theories in (1,1) and (2,0) AdS superspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Siegel, Off-shell central charges, Nucl. Phys. B 173 (1980) 51 [INSPIRE].

    Article  ADS  Google Scholar 

  2. L. Álvarez-Gaumé and D.Z. Freedman, Potentials for the supersymmetric nonlinear σ-model, Commun. Math. Phys. 91 (1983) 87 [INSPIRE].

    Article  ADS  Google Scholar 

  3. J. Scherk and J.H. Schwarz, How to get masses from extra dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Deser, R. Jackiw and S. Templeton, Three-dimensional massive gauge theories, Phys. Rev. Lett. 48 (1982) 975 [INSPIRE].

    Article  ADS  Google Scholar 

  5. S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. E. Witten, (2+1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. J.H. Horne and E. Witten, Conformal gravity in three-dimensions as a gauge theory, Phys. Rev. Lett. 62 (1989) 501 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. P. van Nieuwenhuizen, D = 3 conformal supergravity and Chern-Simons terms, Phys. Rev. D 32 (1985) 872 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. M. Roček and P. van Nieuwenhuizen, N ≥ 2 supersymmetric Chern-Simons terms as D = 3 extended conformal supergravity, Class. Quant. Grav. 3 (1986) 43 [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  10. A. Achúcarro and P.K. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].

    ADS  Google Scholar 

  11. U. Lindström and M. Roček, Superconformal gravity in three-dimensions as a gauge theory, Phys. Rev. Lett. 62 (1989) 2905 [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. A. Achúcarro and P.K. Townsend, Extended supergravities in d = (2+1) as Chern-Simons theories, Phys. Lett. B 229 (1989) 383 [INSPIRE].

    ADS  Google Scholar 

  13. P.S. Howe, J.M. Izquierdo, G. Papadopoulos and P.K. Townsend, New supergravities with central charges and Killing spinors in (2 + 1)-dimensions, Nucl. Phys. B 467 (1996) 183 [hep-th/9505032] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. J.M. Izquierdo and P.K. Townsend, Supersymmetric space-times in (2+1) AdS supergravity models, Class. Quant. Grav. 12 (1995) 895 [gr-qc/9501018] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. S.J. Gates Jr., M.T. Grisaru, M. Roček and W. Siegel, Superspace, or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].

    Google Scholar 

  16. H. Nishino and S.J. Gates Jr., Chern-Simons theories with supersymmetries in three-dimensions, Int. J. Mod. Phys. A 8 (1993) 3371 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  17. M. Kaku and P.K. Townsend, Poincaré supergravity as broken superconformal gravity, Phys. Lett. B 76 (1978) 54 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter couplings in three dimensions, JHEP 03 (2011) 120 [arXiv:1101.4013] [INSPIRE].

    Article  ADS  Google Scholar 

  19. P.S. Howe and E. Sezgin, The supermembrane revisited, Class. Quant. Grav. 22 (2005) 2167 [hep-th/0412245] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. M. Cederwall, U. Gran and B.E.W. Nilsson, D = 3, N = 8 conformal supergravity and the Dragon window, JHEP 09 (2011) 101 [arXiv:1103.4530] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J. Greitz and P.S. Howe, Maximal supergravity in three dimensions: supergeometry and differential forms, JHEP 07 (2011) 071 [arXiv:1103.2730] [INSPIRE].

    Article  ADS  Google Scholar 

  22. I.L. Buchbinder and S.M. Kuzenko, Ideas and methods of supersymmetry and supergravity, or a walk through superspace, IOP, Bristol U.K. (1998).

    MATH  Google Scholar 

  23. P.S. Howe, A superspace approach to extended conformal supergravity, Phys. Lett. B 100 (1981) 389 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. P.S. Howe, Supergravity in superspace, Nucl. Phys. B 199 (1982) 309 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Wess and B. Zumino, Superfield Lagrangian for supergravity, Phys. Lett. B 74 (1978) 51 [INSPIRE].

    ADS  Google Scholar 

  26. K.S. Stelle and P.C. West, Minimal auxiliary fields for supergravity, Phys. Lett. B 74 (1978) 330 [INSPIRE].

    ADS  Google Scholar 

  27. S. Ferrara and P. van Nieuwenhuizen, The auxiliary fields of supergravity, Phys. Lett. B 74 (1978) 333 [INSPIRE].

    ADS  Google Scholar 

  28. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).

    Google Scholar 

  29. V.P. Akulov, D.V. Volkov and V.A. Soroka, Generally covariant theories of gauge fields on superspace, Theor. Math. Phys. 31 (1977) 285 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  30. M.F. Sohnius and P.C. West, An alternative minimal off-shell version of N = 1 supergravity, Phys. Lett. B 105 (1981) 353 [INSPIRE].

    ADS  Google Scholar 

  31. P. Breitenlohner, A geometric interpretation of local supersymmetry, Phys. Lett. B 67 (1977) 49 [INSPIRE].

    ADS  Google Scholar 

  32. P. Breitenlohner, Some invariant Lagrangians for local supersymmetry, Nucl. Phys. B 124 (1977) 500 [INSPIRE].

    Article  ADS  Google Scholar 

  33. W. Siegel and S.J. Gates Jr., Superfield supergravity, Nucl. Phys. B 147 (1979) 77 [INSPIRE].

    Article  ADS  Google Scholar 

  34. D. Butter and S.M. Kuzenko, A dual formulation of supergravity-matter theories, Nucl. Phys. B 854 (2012) 1 [arXiv:1106.3038] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. D. Butter and S.M. Kuzenko, N = 2 AdS supergravity and supercurrents, JHEP 07 (2011) 081 [arXiv:1104.2153] [INSPIRE].

    Article  ADS  Google Scholar 

  36. D. Butter and S.M. Kuzenko, N = 2 supersymmetric σ-models in AdS, Phys. Lett. B 703 (2011) 620 [arXiv:1105.3111] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  37. D. Butter and S.M. Kuzenko, The structure of N = 2 supersymmetric nonlinear σ-models in AdS 4, JHEP 11 (2011) 080 [arXiv:1108.5290] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. Adams, H. Jockers, V. Kumar and J.M. Lapan, N = 1 σ-models in AdS 4, arXiv:1104.3155 [INSPIRE].

  39. G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Ferrara and B. Zumino, Transformation properties of the supercurrent, Nucl. Phys. B 87 (1975) 207 [INSPIRE].

    Article  ADS  Google Scholar 

  41. V. Ogievetsky and E. Sokatchev, On vector superfield generated by supercurrent, Nucl. Phys. B 124 (1977) 309 [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Ferrara and B. Zumino, Structure of conformal supergravity, Nucl. Phys. B 134 (1978) 301 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. W. Siegel, A derivation of the supercurrent superfield, Harvard Preprint HUTP-77/A089 [INSPIRE].

  44. T.E. Clark, O. Piguet and K. Sibold, Supercurrents, renormalization and anomalies, Nucl. Phys. B 143 (1978) 445 [INSPIRE].

    Article  ADS  Google Scholar 

  45. S.J. Gates Jr., M.T. Grisaru and W. Siegel, Auxiliary field anomalies, Nucl. Phys. B 203 (1982) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  46. H. Osborn, N = 1 superconformal symmetry in four-dimensional quantum field theory, Annals Phys. 272 (1999) 243 [hep-th/9808041] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. M. Magro, I. Sachs and S. Wolf, Superfield Noether procedure, Annals Phys. 298 (2002) 123 [hep-th/0110131] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. Z. Komargodski and N. Seiberg, Comments on the Fayet-Iliopoulos term in field theory and supergravity, JHEP 06 (2009) 007 [arXiv:0904.1159] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. K.R. Dienes and B. Thomas, On the inconsistency of Fayet-Iliopoulos terms in supergravity theories, Phys. Rev. D 81 (2010) 065023 [arXiv:0911.0677] [INSPIRE].

    ADS  Google Scholar 

  50. S.M. Kuzenko, The Fayet-Iliopoulos term and nonlinear self-duality, Phys. Rev. D 81 (2010) 085036 [arXiv:0911.5190] [INSPIRE].

    ADS  Google Scholar 

  51. Z. Komargodski and N. Seiberg, Comments on supercurrent multiplets, supersymmetric field theories and supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. S.M. Kuzenko, Variant supercurrent multiplets, JHEP 04 (2010) 022 [arXiv:1002.4932] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. D. Butter, Conserved supercurrents and Fayet-Iliopoulos terms in supergravity, arXiv:1003.0249 [INSPIRE].

  54. S. Zheng and J.-h. Huang, Variant supercurrents and linearized supergravity, Class. Quant. Grav. 28 (2011) 075012 [arXiv:1007.3092] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. S.M. Kuzenko, Variant supercurrents and Noether procedure, Eur. Phys. J. C 71 (2011) 1513 [arXiv:1008.1877] [INSPIRE].

    ADS  Google Scholar 

  56. T.T. Dumitrescu and N. Seiberg, Supercurrents and brane currents in diverse dimensions, JHEP 07 (2011) 095 [arXiv:1106.0031] [INSPIRE].

    Article  ADS  Google Scholar 

  57. D. Butter and S.M. Kuzenko, N = 2 supergravity and supercurrents, JHEP 12 (2010) 080 [arXiv:1011.0339] [INSPIRE].

    Article  ADS  Google Scholar 

  58. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  59. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].

    ADS  Google Scholar 

  60. O. Coussaert and M. Henneaux, Supersymmetry of the (2 + 1) black holes, Phys. Rev. Lett. 72 (1994) 183 [hep-th/9310194] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  61. S.M. Kuzenko and S.A. McCarthy, On the component structure of N = 1 supersymmetric nonlinear electrodynamics, JHEP 05 (2005) 012 [hep-th/0501172] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. I.A. Bandos and C. Meliveo, Three form potential in (special) minimal supergravity superspace and supermembrane supercurrent, arXiv:1107.3232 [INSPIRE].

  63. B.B. Deo and S.J. Gates Jr., Comments on nonminimal N = 1 scalar multiplets, Nucl. Phys. B 254 (1985) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  64. S.M. Kuzenko and S.J. Tyler, Complex linear superfield as a model for goldstino, JHEP 04 (2011) 057 [arXiv:1102.3042] [INSPIRE].

    Article  ADS  Google Scholar 

  65. S.J. Gates Jr., S.M. Kuzenko and J. Phillips, The off-shell (3/2, 2) supermultiplets revisited, Phys. Lett. B 576 (2003) 97 [hep-th/0306288] [INSPIRE].

    ADS  Google Scholar 

  66. I.L. Buchbinder, S.J. Gates Jr., W.D. Linch and J. Phillips, New 4-D, N = 1 superfield theory: model of free massive superspin 3/2 multiplet, Phys. Lett. B 535 (2002) 280 [hep-th/0201096] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  67. E.A. Ivanov and A.S. Sorin, Superfield formulation of OSp(1, 4) supersymmetry, J. Phys. A 13 (1980) 1159 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  68. S.M. Kuzenko and A.G. Sibiryakov, Free massless higher superspin superfields on the anti-de Sitter superspace, Phys. Atom. Nucl. 57 (1994) 1257 [Yad. Fiz. 57 (1994) 1326] [INSPIRE].

    ADS  Google Scholar 

  69. I.A. Bandos, E. Ivanov, J. Lukierski and D. Sorokin, On the superconformal flatness of AdS superspaces, JHEP 06 (2002) 040 [hep-th/0205104] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  70. S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Field theory in 4D N = 2 conformally flat superspace, JHEP 10 (2008) 001 [arXiv:0807.3368] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  71. S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Conformally flat supergeometry in five dimensions, JHEP 06 (2008) 097 [arXiv:0804.1219] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  72. S.M. Kuzenko, J.-H. Park, G. Tartaglino-Mazzucchelli and R. Unge, Off-shell superconformal nonlinear σ-models in three dimensions, JHEP 01 (2011) 146 [arXiv:1011.5727] [INSPIRE].

    Article  ADS  Google Scholar 

  73. E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity in three dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  74. R. Andringa et al., Massive 3D supergravity, Class. Quant. Grav. 27 (2010) 025010 [arXiv:0907.4658] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  75. E.A. Bergshoeff, O. Hohm, J. Rosseel, E. Sezgin and P.K. Townsend, More on massive 3D supergravity, Class. Quant. Grav. 28 (2011) 015002 [arXiv:1005.3952] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  76. E.A. Bergshoeff, O. Hohm, J. Rosseel and P.K. Townsend, On maximal massive 3D supergravity, Class. Quant. Grav. 27 (2010) 235012 [arXiv:1007.4075] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  77. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [INSPIRE].

  78. V. Pestun, Localization of the four-dimensional N = 4 SYM to a two-sphere and 1/8 BPS Wilson loops, arXiv:0906.0638 [INSPIRE].

  79. D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, arXiv:1012.3210 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Tartaglino-Mazzucchelli.

Additional information

ArXiv ePrint: 1109.0496

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzenko, S.M., Tartaglino-Mazzucchelli, G. Three-dimensional \( \mathcal{N} = 2 \) (AdS) supergravity and associated supercurrents. J. High Energ. Phys. 2011, 52 (2011). https://doi.org/10.1007/JHEP12(2011)052

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)052

Keywords

Navigation