Skip to main content
Log in

Dynamical holographic QCD model for glueball and light meson spectra

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this work, we offer a dynamical soft-wall model to describe the gluodynamics and chiral dynamics in one systematical framework. We firstly construct a quenched dynamical holographic QCD (hQCD) model in the graviton-dilaton framework for the pure gluon system, then develop a dynamical hQCD model for the two flavor system in the graviton-dilaton-scalar framework by adding light flavors on the gluodynamical background. For two forms of dilaton background field \( \Phi =\mu_G^2{z^2} \) and \( \Phi =\mu_G^2{z^2} \tanh \left( {{{{\mu {{{_{{{G^2}}}^4}}^z}^2}} \left/ {{\mu_G^2}} \right.}} \right) \), the quadratic correction to dilaton background field at infrared encodes important non-perturbative gluodynamics and naturally induces a deformed warp factor of the metric. By self-consistently solving the deformed metric induced by the dilaton background field, we find that the scalar glueball spectra in the quenched dynamical model is in very well agreement with lattice data. For two flavor system in the graviton-dilaton-scalar framework, the deformed metric is self-consistently solved by considering both the chiral condensate and nonperturbative gluodynamics in the vacuum, which are responsible for the chiral symmetry breaking and linear confinement, respectively. It is found that the mixing between the chiral condensate and gluon condensate is important to produce the correct light flavor meson spectra. The pion form factor and the vector couplings are also investigated in the dynamical hQCD model. Besides, we give the criteria for the existence of linear quark potential from the metric structure, and show a negative quadratic dilaton background field is not favored in the graviton-dilaton framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Kogut, A review of the lattice gauge theory approach to quantum chromodynamics, Rev. Mod. Phys. 55 (1983) 775 [INSPIRE].

    ADS  Google Scholar 

  2. R. Gupta, Introduction to lattice QCD: course, hep-lat/9807028 [INSPIRE].

  3. Z. Fodor and C. Hölbling, Light hadron masses from lattice QCD, Rev. Mod. Phys. 84 (2012) 449 [arXiv:1203.4789] [INSPIRE].

    ADS  Google Scholar 

  4. J.C. Bloch, A. Cucchieri, K. Langfeld and T. Mendes, Propagators and running coupling from SU(2) lattice gauge theory, Nucl. Phys. B 687 (2004) 76 [hep-lat/0312036] [INSPIRE].

  5. R. Alkofer and L. von Smekal, The infrared behavior of QCD Greens functions: confinement dynamical symmetry breaking and hadrons as relativistic bound states, Phys. Rept. 353 (2001) 281 [hep-ph/0007355] [INSPIRE].

    ADS  MATH  Google Scholar 

  6. A. Bashir et al., Collective perspective on advances in Dyson-Schwinger equation QCD, Commun. Theor. Phys. 58 (2012) 79 [arXiv:1201.3366] [INSPIRE].

    MATH  Google Scholar 

  7. C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [INSPIRE].

    ADS  Google Scholar 

  8. J.M. Pawlowski, Aspects of the functional renormalisation group, Annals Phys. 322 (2007) 2831 [hep-th/0512261] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  9. H. Gies, Introduction to the functional RG and applications to gauge theories, Lect. Notes Phys. 852 (2012) 287 [hep-ph/0611146] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  11. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  13. J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].

    Google Scholar 

  14. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  15. J. de Boer, The Holographic renormalization group, Fortsch. Phys. 49 (2001) 339 [hep-th/0101026] [INSPIRE].

    ADS  MATH  Google Scholar 

  16. M. Li, A Note on relation between holographic RG equation and Polchinskis RG equation, Nucl. Phys. B 579 (2000) 525 [hep-th/0001193] [INSPIRE].

    ADS  Google Scholar 

  17. I. Heemskerk and J. Polchinski, Holographic and wilsonian renormalization groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: holographic Wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. V. Balasubramanian, M. Guica and A. Lawrence, Holographic interpretations of the renormalization group, JHEP 01 (2013) 115 [arXiv:1211.1729] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. A. Adams, L.D. Carr, T. Schäfer, P. Steinberg and J.E. Thomas, Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas and holographic duality, New J. Phys. 14 (2012) 115009 [arXiv:1205.5180] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].

    ADS  Google Scholar 

  22. A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].

    ADS  Google Scholar 

  23. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].

    ADS  MATH  Google Scholar 

  24. T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [INSPIRE].

    ADS  MATH  Google Scholar 

  25. G.F. de Teramond and S.J. Brodsky, Hadronic spectrum of a holographic dual of QCD, Phys. Rev. Lett. 94 (2005) 201601 [hep-th/0501022] [INSPIRE].

    ADS  Google Scholar 

  26. L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [INSPIRE].

    ADS  Google Scholar 

  27. K. Ghoroku, N. Maru, M. Tachibana and M. Yahiro, Holographic model for hadrons in deformed AdS 5 background, Phys. Lett. B 633 (2006) 602 [hep-ph/0510334] [INSPIRE].

    ADS  Google Scholar 

  28. O. Andreev and V.I. Zakharov, Gluon condensate, Wilson loops and gauge/string duality, Phys. Rev. D 76 (2007) 047705 [hep-ph/0703010] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. O. Andreev and V.I. Zakharov, Heavy-quark potentials and AdS/QCD, Phys. Rev. D 74 (2006) 025023 [hep-ph/0604204] [INSPIRE].

    ADS  Google Scholar 

  30. M. Kruczenski, L.A. Pando Zayas, J. Sonnenschein and D. Vaman, Regge trajectories for mesons in the holographic dual of large-N c QCD, JHEP 06 (2005) 046 [hep-th/0410035] [INSPIRE].

    ADS  Google Scholar 

  31. S. Kuperstein and J. Sonnenschein, Non-critical, near extremal AdS 6 background as a holographic laboratory of four dimensional YM theory, JHEP 11 (2004) 026 [hep-th/0411009] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. H. Forkel, M. Beyer and T. Frederico, Linear square-mass trajectories of radially and orbitally excited hadrons in holographic QCD, JHEP 07 (2007) 077 [arXiv:0705.1857] [INSPIRE].

    ADS  Google Scholar 

  33. D.K. Hong, T. Inami and H.U. Yee, Baryons in AdS/QCD, Phys. Lett. B 646 (2007) 165 [hep-ph/0609270] [INSPIRE].

    ADS  Google Scholar 

  34. K. Nawa, H. Suganuma and T. Kojo, Baryons in holographic QCD, Phys. Rev. D 75 (2007) 086003 [hep-th/0612187] [INSPIRE].

    ADS  Google Scholar 

  35. D.K. Hong, M. Rho, H.U. Yee and P. Yi, Chiral dynamics of baryons from string theory, Phys. Rev. D 76 (2007) 061901 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. C. Csáki, H. Ooguri, Y. Oz and J. Terning, Glueball mass spectrum from supergravity, JHEP 01 (1999) 017 [hep-th/9806021] [INSPIRE].

    ADS  Google Scholar 

  37. R. de Mello Koch, A. Jevicki, M. Mihailescu and J.P. Nunes, Evaluation of glueball masses from supergravity, Phys. Rev. D 58 (1998) 105009 [hep-th/9806125] [INSPIRE].

    ADS  Google Scholar 

  38. M. Zyskin, A Note on the glueball mass spectrum, Phys. Lett. B 439 (1998) 373 [hep-th/9806128] [INSPIRE].

    ADS  Google Scholar 

  39. J.A. Minahan, Glueball mass spectra and other issues for supergravity duals of QCD models, JHEP 01 (1999) 020 [hep-th/9811156] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. C. Csáki, Y. Oz, J. Russo and J. Terning, Large-N QCD from rotating branes, Phys. Rev. D 59 (1999) 065012 [hep-th/9810186] [INSPIRE].

    ADS  Google Scholar 

  41. R.C. Brower, S.D. Mathur and C.-I. Tan, Glueball spectrum for QCD from AdS supergravity duality, Nucl. Phys. B 587 (2000) 249 [hep-th/0003115] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. R. Apreda, D.E. Crooks, N.J. Evans and M. Petrini, Confinement, glueballs and strings from deformed AdS, JHEP 05 (2004) 065 [hep-th/0308006] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. H. Boschi-Filho and N.R. Braga, Gauge/string duality and scalar glueball mass ratios, JHEP 05 (2003) 009 [hep-th/0212207] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  44. H. Boschi-Filho and N.R. Braga, QCD/string holographic mapping and glueball mass spectrum, Eur. Phys. J. C 32 (2004) 529 [hep-th/0209080] [INSPIRE].

    ADS  Google Scholar 

  45. H. Boschi-Filho, N.R. Braga and H.L. Carrion, Glueball Regge trajectories from gauge/string duality and the Pomeron, Phys. Rev. D 73 (2006) 047901 [hep-th/0507063] [INSPIRE].

    ADS  Google Scholar 

  46. P. Colangelo, F. De Fazio, F. Jugeau and S. Nicotri, On the light glueball spectrum in a holographic description of QCD, Phys. Lett. B 652 (2007) 73 [hep-ph/0703316] [INSPIRE].

    ADS  Google Scholar 

  47. O. Aharony, S.S. Gubser, J. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. O. Aharony, The NonAdS/nonCFT correspondence, or three different paths to QCD, hep-th/0212193 [INSPIRE].

  49. A. Zaffaroni, RTN lectures on the non-Ads/non-CFT correspondence, PoS(RTN2005)005.

  50. J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in gauge/gravity dualsA review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [INSPIRE].

    ADS  Google Scholar 

  51. G.F. de Teramond and S.J. Brodsky, Hadronic form factor models and spectroscopy within the gauge/gravity correspondence, arXiv:1203.4025 [INSPIRE].

  52. Y. Kim, I.J. Shin and T. Tsukioka, Holographic QCD: past, present and future, Prog. Part. Nucl. Phys. 68 (2013) 55 [arXiv:1205.4852] [INSPIRE].

    ADS  Google Scholar 

  53. Y. Nambu, Quasiparticles and gauge invariance in the theory of superconductivity, Phys. Rev. 117 (1960) 648 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  54. J. Greensite, Center vortices and other scenarios of quark confinement, Eur. Phys. J. ST 140 (2007) 1 [INSPIRE].

    ADS  Google Scholar 

  55. G. Veneziano, Construction of a crossing-symmetric, Regge behaved amplitude for linearly rising trajectories, Nuovo Cim. A 57 (1968) 190 [INSPIRE].

    ADS  Google Scholar 

  56. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [INSPIRE].

    ADS  Google Scholar 

  57. E. Eichten, K. Gottfried, T. Kinoshita, K. Lane and T.-M. Yan, Charmonium: comparison with experiment, Phys. Rev. D 21 (1980) 203 [INSPIRE].

    ADS  Google Scholar 

  58. M. Huang, S. He, , Q.-S. Yan and Y. Yang, Confront holographic QCD with Regge trajectories, Eur. Phys. J. C 66 (2010) 187 [arXiv:0710.0988] [INSPIRE].

    ADS  Google Scholar 

  59. P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri, Light scalar mesons in the soft-wall model of AdS/QCD, Phys. Rev. D 78 (2008) 055009 [arXiv:0807.1054] [INSPIRE].

    ADS  Google Scholar 

  60. T. Gherghetta, J.I. Kapusta and T.M. Kelley, Chiral symmetry breaking in the soft-wall AdS/QCD model, Phys. Rev. D 79 (2009) 076003 [arXiv:0902.1998] [INSPIRE].

    ADS  Google Scholar 

  61. Y.-Q. Sui, Y.-L. Wu, Z.-F. Xie and Y.-B. Yang, Prediction for the mass spectra of resonance mesons in the soft-wall AdS/QCD with a modified 5D metric, Phys. Rev. D 81 (2010) 014024 [arXiv:0909.3887] [INSPIRE].

    ADS  Google Scholar 

  62. Y.-Q. Sui, Y.-L. Wu and Y.-B. Yang, Predictive AdS/QCD model for mass spectra of mesons with three flavors, Phys. Rev. D 83 (2011) 065030 [arXiv:1012.3518] [INSPIRE].

    ADS  Google Scholar 

  63. S.S. Afonin, Generalized soft wall model, Phys. Lett. B 719 (2013) 399 [arXiv:1210.5210] [INSPIRE].

    ADS  Google Scholar 

  64. A. Cherman, T.D. Cohen and E.S. Werbos, The chiral condensate in holographic models of QCD, Phys. Rev. C 79 (2009) 045203 [arXiv:0804.1096] [INSPIRE].

    ADS  Google Scholar 

  65. B. Batell and T. Gherghetta, Dynamical soft-wall AdS/QCD, Phys. Rev. D 78 (2008) 026002 [arXiv:0801.4383] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  66. T.M. Kelley, S.P. Bartz and J.I. Kapusta, Pseudoscalar mass spectrum in a soft-wall model of AdS/QCD, Phys. Rev. D 83 (2011) 016002 [arXiv:1009.3009] [INSPIRE].

    ADS  Google Scholar 

  67. J. Kapusta and T. Springer, Potentials for soft wall AdS/QCD, Phys. Rev. D 81 (2010) 086009 [arXiv:1001.4799] [INSPIRE].

    ADS  Google Scholar 

  68. T.M. Kelley, The dynamics and thermodynamics of soft-wall AdS/QCD, arXiv:1108.0653 [INSPIRE].

  69. T.M. Kelley, The thermodynamics of a 5D gravity-dilaton-tachyon solution, arXiv:1107.0931 [INSPIRE].

  70. S. Afonin, No-wall holographic model for QCD, Int. J. Mod. Phys. A 26 (2011) 3615 [arXiv:1012.5065] [INSPIRE].

    ADS  Google Scholar 

  71. W. de Paula, T. Frederico, H. Forkel and M. Beyer, Dynamical AdS/QCD with area-law confinement and linear Regge trajectories, Phys. Rev. D 79 (2009) 075019 [arXiv:0806.3830] [INSPIRE].

    ADS  Google Scholar 

  72. S.J. Brodsky and G.F. de Teramond, Light front hadron dynamics and AdS/CFT correspondence, Phys. Lett. B 582 (2004) 211 [hep-th/0310227] [INSPIRE].

    ADS  Google Scholar 

  73. T. Branz, T. Gutsche, V.E. Lyubovitskij, I. Schmidt and A. Vega, Light and heavy mesons in a soft-wall holographic approach, Phys. Rev. D 82 (2010) 074022 [arXiv:1008.0268] [INSPIRE].

    ADS  Google Scholar 

  74. J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  75. O. Andreev and V.I. Zakharov, Heavy-quark potentials and AdS/QCD, Phys. Rev. D 74 (2006) 025023 [hep-ph/0604204] [INSPIRE].

    ADS  Google Scholar 

  76. H. Pirner and B. Galow, Strong equivalence of the AdS-metric and the QCD running coupling, Phys. Lett. B 679 (2009) 51 [arXiv:0903.2701] [INSPIRE].

    ADS  Google Scholar 

  77. S. He, M. Huang and Q.-S. Yan, Logarithmic correction in the deformed AdS 5 model to produce the heavy quark potential and QCD β-function, Phys. Rev. D 83 (2011) 045034 [arXiv:1004.1880] [INSPIRE].

    ADS  Google Scholar 

  78. F. Zuo, Improved soft-wall model with a negative dilaton, Phys. Rev. D 82 (2010) 086011 [arXiv:0909.4240] [INSPIRE].

    ADS  Google Scholar 

  79. G.F. de Teramond and S.J. Brodsky, Light-front holography and gauge/gravity duality: the light meson and baryon spectra, Nucl. Phys. Proc. Suppl. 199 (2010) 89 [arXiv:0909.3900] [INSPIRE].

    ADS  Google Scholar 

  80. T. Gutsche, V.E. Lyubovitskij, I. Schmidt and A. Vega, Dilaton in a soft-wall holographic approach to mesons and baryons, Phys. Rev. D 85 (2012) 076003 [arXiv:1108.0346] [INSPIRE].

    ADS  Google Scholar 

  81. A. Karch, E. Katz, D.T. Son and M.A. Stephanov, On the sign of the dilaton in the soft wall models, JHEP 04 (2011) 066 [arXiv:1012.4813] [INSPIRE].

    ADS  Google Scholar 

  82. D. Li, M. Huang and Q.-S. Yan, A dynamical holographic QCD model for chiral symmetry breaking and linear confinement, Eur. Phys. J. C (2013) 73:2615 [arXiv:1206.2824] [INSPIRE].

    ADS  Google Scholar 

  83. C. Csáki and M. Reece, Toward a systematic holographic QCD: a braneless approach, JHEP 05 (2007) 062 [hep-ph/0608266] [INSPIRE].

    ADS  Google Scholar 

  84. S.S. Gubser and A. Nellore, Mimicking the QCD equation of state with a dual black hole, Phys. Rev. D 78 (2008) 086007 [arXiv:0804.0434] [INSPIRE].

    ADS  Google Scholar 

  85. U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [INSPIRE].

    Google Scholar 

  86. U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [INSPIRE].

    Google Scholar 

  87. D. Li, S. He, M. Huang and Q.-S. Yan, Thermodynamics of deformed AdS 5 model with a positive/negative quadratic correction in graviton-dilaton system, JHEP 09 (2011) 041 [arXiv:1103.5389] [INSPIRE].

    ADS  Google Scholar 

  88. M.A. Shifman, A. Vainshtein and V.I. Zakharov, QCD and resonance physics. Sum rules, Nucl. Phys. B 147 (1979) 385 [INSPIRE].

    ADS  Google Scholar 

  89. G. Boyd et al., Thermodynamics of SU(3) lattice gauge theory, Nucl. Phys. B 469 (1996) 419 [hep-lat/9602007] [INSPIRE].

    ADS  Google Scholar 

  90. T. Schäfer and E.V. Shuryak, Instantons in QCD, Rev. Mod. Phys. 70 (1998) 323 [hep-ph/9610451] [INSPIRE].

    ADS  Google Scholar 

  91. L.S. Celenza and C.M. Shakin, Description of the gluon condensate, Phys. Rev. D 34 (1986) 1591 [INSPIRE].

    ADS  Google Scholar 

  92. M. Lavelle and M. Schaden, Propagators and condensates in QCD, Phys. Lett. B 208 (1988) 297 [INSPIRE].

    ADS  Google Scholar 

  93. M. Lavelle and M. Oleszczuk, The operator product expansion of the QCD propagators, Mod. Phys. Lett. A 7 (1992) 3617 [INSPIRE].

    ADS  Google Scholar 

  94. F. Gubarev, L. Stodolsky and V.I. Zakharov, On the significance of the vector potential squared, Phys. Rev. Lett. 86 (2001) 2220 [hep-ph/0010057] [INSPIRE].

    ADS  Google Scholar 

  95. H. Verschelde, K. Knecht, K. Van Acoleyen and M. Vanderkelen, The Nonperturbative groundstate of QCD and the local composite operator A(μ)2, Phys. Lett. B 516 (2001) 307 [hep-th/0105018] [INSPIRE].

    ADS  Google Scholar 

  96. K. Chetyrkin, S. Narison and V.I. Zakharov, Short distance tachyonic gluon mass and 1/Q 2 corrections, Nucl. Phys. B 550 (1999) 353 [hep-ph/9811275] [INSPIRE].

    ADS  Google Scholar 

  97. F. Gubarev and V.I. Zakharov, On the emerging phenomenology of < (A a(μ)2(min) >, Phys. Lett. B 501 (2001) 28 [hep-ph/0010096] [INSPIRE].

    ADS  Google Scholar 

  98. K.-I. Kondo, Vacuum condensate of mass dimension 2 as the origin of mass gap and quark confinement, Phys. Lett. B 514 (2001) 335 [hep-th/0105299] [INSPIRE].

    ADS  Google Scholar 

  99. A. Slavnov, Gauge invariance of dimension two condensate in Yang-Mills theory, Theor. Math. Phys. 143 (2005) 489 [Teor. Mat. Fiz. 143 (2005) 3] [hep-th/0407194] [INSPIRE].

  100. B. Blossier et al., Renormalisation of quark propagators from twisted-mass lattice QCD at N f  = 2, Phys. Rev. D 83 (2011) 074506 [arXiv:1011.2414] [INSPIRE].

    ADS  Google Scholar 

  101. B. Blossier, P. Boucaud, M. Brinet, F. De Soto, X. Du, et al., RI/MOM renormalization constants (N f  = 4) and the strong coupling constant (N f  = 2 + 1 + 1) from twisted-mass QCD, PoS(LATTICE 2011)223 [arXiv:1111.3023] [INSPIRE].

  102. F. Xu and M. Huang, Electric and magnetic screenings of gluons in a model with dimension-2 gluon condensate, Chin. Phys. C 37 (2013) 014103 [arXiv:1111.5152] [INSPIRE].

    ADS  Google Scholar 

  103. P. Boucaud et al., Testing Landau gauge OPE on the lattice with a < A 2 > condensate, Phys. Rev. D 63 (2001) 114003 [hep-ph/0101302] [INSPIRE].

    ADS  Google Scholar 

  104. D. Dudal et al., Dynamical gluon mass generation from < A 2(μ) > in linear covariant gauges, JHEP 01 (2004) 044 [hep-th/0311194] [INSPIRE].

    ADS  Google Scholar 

  105. D. Dudal, H. Verschelde, R.E. Browne and J.A. Gracey, A determination of A 2(μ) and the nonperturbative vacuum energy of Yang-Mills theory in the Landau gauge, Phys. Lett. B 562 (2003) 87 [hep-th/0302128] [INSPIRE].

    ADS  Google Scholar 

  106. E. Ruiz Arriola and W. Broniowski, Dimension-two gluon condensate from large-N c Regge models, Phys. Rev. D 73 (2006) 097502 [hep-ph/0603263] [INSPIRE].

    ADS  Google Scholar 

  107. M.N. Chernodub and E.-M. Ilgenfritz, Electric-magnetic asymmetry of the A 2 condensate and the phases of Yang-Mills theory, Phys. Rev. D 78 (2008) 034036 [arXiv:0805.3714] [INSPIRE].

    ADS  Google Scholar 

  108. D. Vercauteren and H. Verschelde, The asymmetry of the dimension 2 gluon condensate: the finite temperature case, Phys. Rev. D 82 (2010) 085026 [arXiv:1007.2789] [INSPIRE].

    ADS  Google Scholar 

  109. J.M. Cornwall, Quark confinement and vortices in massive gauge invariant QCD, Nucl. Phys. B 157 (1979) 392 [INSPIRE].

    ADS  Google Scholar 

  110. J.M. Cornwall and A. Soni, Glueballs as bound states of massive gluons, Phys. Lett. B 120 (1983) 431 [INSPIRE].

    ADS  Google Scholar 

  111. J.M. Cornwall and A. Soni, Couplings of low lying glueballs to light quarks, gluons, and hadrons, Phys. Rev. D 29 (1984) 1424 [INSPIRE].

    ADS  Google Scholar 

  112. A.A. Migdal and M.A. Shifman, Dilaton effective lagrangian in gluodynamics, Phys. Lett. B 114 (1982) 445 [INSPIRE].

    ADS  Google Scholar 

  113. C. Rosenzweig, J. Schechter and C.G. Trahern, Is the effective lagrangian for QCD a σ-model?, Phys. Rev. D 21 (1980) 3388 [INSPIRE].

    ADS  Google Scholar 

  114. R. Dick, Confinement from a massive scalar in QCD, Eur. Phys. J. C 6 (1999) 701 [hep-ph/9803209] [INSPIRE].

    ADS  Google Scholar 

  115. D. Kharzeev, E. Levin and K. Tuchin, Classical gluodynamics in curved space-time and the soft Pomeron, Phys. Lett. B 547 (2002) 21 [hep-ph/0204274] [INSPIRE].

    ADS  Google Scholar 

  116. D. Kharzeev, E. Levin and K. Tuchin, Broken scale invariance, massless dilaton and confinement in QCD, JHEP 06 (2009) 055 [arXiv:0809.3794] [INSPIRE].

    ADS  Google Scholar 

  117. M. Chabab, On the implications of a dilaton in gauge theory, Int. J. Mod. Phys. A 22 (2007) 5717 [arXiv:0709.1226] [INSPIRE].

    ADS  Google Scholar 

  118. M. Gell-Mann, Quarks, Acta Phys. Austriaca Suppl. 9 (1972) 733 [INSPIRE].

    Google Scholar 

  119. H. Fritzsch, M. Gell-Mann and H. Leutwyler, Advantages of the color octet gluon picture, Phys. Lett. B 47 (1973) 365 [INSPIRE].

    ADS  Google Scholar 

  120. V. Mathieu, N. Kochelev and V. Vento, The physics of glueballs, Int. J. Mod. Phys. E 18 (2009) 1 [arXiv:0810.4453] [INSPIRE].

    ADS  Google Scholar 

  121. E. Klempt and A. Zaitsev, Glueballs, hybrids, multiquarks. Experimental facts versus QCD inspired concepts, Phys. Rept. 454 (2007) 1 [arXiv:0708.4016] [INSPIRE].

    ADS  Google Scholar 

  122. C. Amsler and N. Tornqvist, Mesons beyond the naive quark model, Phys. Rept. 389 (2004) 61 [INSPIRE].

    ADS  Google Scholar 

  123. H.B. Meyer, Glueball Regge trajectories, hep-lat/0508002 [INSPIRE].

  124. B. Lucini and M. Teper, SU(N) gauge theories in four-dimensions: Exploring the approach to N = ∞, JHEP 06 (2001) 050 [hep-lat/0103027] [INSPIRE].

    ADS  Google Scholar 

  125. C.J. Morningstar and M.J. Peardon, The glueball spectrum from an anisotropic lattice study, Phys. Rev. D 60 (1999) 034509 [hep-lat/9901004] [INSPIRE].

    ADS  Google Scholar 

  126. Y. Chen et al., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D 73 (2006) 014516 [hep-lat/0510074] [INSPIRE].

    ADS  Google Scholar 

  127. P. Colangelo, F. De Fazio, F. Jugeau and S. Nicotri, On the light glueball spectrum in a holographic description of QCD, Phys. Lett. B 652 (2007) 73 [hep-ph/0703316] [INSPIRE].

    ADS  Google Scholar 

  128. H. Forkel, Holographic glueball structure, Phys. Rev. D 78 (2008) 025001 [arXiv:0711.1179] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  129. H. Boschi-Filho, N. Braga, F. Jugeau and M. Torres, Anomalous dimensions and scalar glueball spectroscopy in AdS/QCD, Eur. Phys. J. C 73 (2013) 2540 [arXiv:1208.2291] [INSPIRE].

    ADS  Google Scholar 

  130. K. Ghoroku, K. Kubo, T. Taminato and F. Toyoda, Holographic glueballs and infrared wall driven by dilaton, JHEP 04 (2012) 087 [arXiv:1111.7032] [INSPIRE].

    ADS  Google Scholar 

  131. D. Binosi, Dynamical gluon mass generation and the IR sector of QCD, PoS(LC2010)020 [arXiv:1010.5254] [INSPIRE].

  132. A. Aguilar, D. Binosi and J. Papavassiliou, Gluon and ghost propagators in the Landau gauge: deriving lattice results from Schwinger-Dyson equations, Phys. Rev. D 78 (2008) 025010 [arXiv:0802.1870] [INSPIRE].

    ADS  Google Scholar 

  133. A. Cucchieri and T. Mendes, Numerical test of the Gribov-Zwanziger scenario in Landau gauge, PoS(QCD-TNT09)026 [arXiv:1001.2584] [INSPIRE].

  134. A. Cucchieri and T. Mendes, Whats up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices, PoS(LATTICE 2007)297 [arXiv:0710.0412] [INSPIRE].

  135. I. Bogolubsky, E. Ilgenfritz, M. Muller-Preussker and A. Sternbeck, The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes, PoS(LATTICE 2007)290 [arXiv:0710.1968] [INSPIRE].

  136. D. Dudal, J.A. Gracey, S.P. Sorella, N. Vandersickel and H. Verschelde, A refinement of the Gribov-Zwanziger approach in the Landau gauge: Infrared propagators in harmony with the lattice results, Phys. Rev. D 78 (2008) 065047 [arXiv:0806.4348] [INSPIRE].

    ADS  Google Scholar 

  137. J.M. Cornwall, Dynamical mass generation in continuum QCD, Phys. Rev. D 26 (1982) 1453 [INSPIRE].

    ADS  Google Scholar 

  138. K.-I. Kondo, A nonperturbative construction of massive Yang-Mills fields without Higgs fields, Phys. Rev. D 87 (2013) 025008 [arXiv:1208.3521] [INSPIRE].

    ADS  Google Scholar 

  139. S.-J. Rey, S. Theisen and J.-T. Yee, Wilson-Polyakov loop at finite temperature in large-N gauge theory and Anti-de Sitter supergravity, Nucl. Phys. B 527 (1998) 171 [hep-th/9803135] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  140. L.Y. Glozman, QCD symmetries in excited hadrons, arXiv:0710.0978 [INSPIRE].

  141. M. Shifman and A. Vainshtein, Highly excited mesons, linear Regge trajectories and the pattern of the chiral symmetry realization, Phys. Rev. D 77 (2008) 034002 [arXiv:0710.0863] [INSPIRE].

    ADS  Google Scholar 

  142. S. Hong, S. Yoon and M.J. Strassler, On the couplings of vector mesons in AdS/QCD, JHEP 04 (2006) 003 [hep-th/0409118] [INSPIRE].

    ADS  Google Scholar 

  143. H.R. Grigoryan and A.V. Radyushkin, Pion form factor in the chiral limit of a hard-wall AdS/QCD model, Phys. Rev. D 76 (2007) 115007 [arXiv:0709.0500] [INSPIRE].

    ADS  Google Scholar 

  144. H.R. Grigoryan and A.V. Radyushkin, Form factors and wave functions of vector mesons in holographic QCD, Phys. Lett. B 650 (2007) 421 [hep-ph/0703069] [INSPIRE].

    ADS  Google Scholar 

  145. H.J. Kwee and R.F. Lebed, Pion form factors in holographic QCD, JHEP 01 (2008) 027 [arXiv:0708.4054] [INSPIRE].

    ADS  Google Scholar 

  146. H.J. Kwee and R.F. Lebed, Pion form factor in improved holographic QCD backgrounds, Phys. Rev. D 77 (2008) 115007 [arXiv:0712.1811] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danning Li.

Additional information

ArXiv ePrint: 1303.6929

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Huang, M. Dynamical holographic QCD model for glueball and light meson spectra. J. High Energ. Phys. 2013, 88 (2013). https://doi.org/10.1007/JHEP11(2013)088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)088

Keywords

Navigation