Skip to main content
Log in

Higgs discovery: the beginning or the end of natural EWSB?

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We use global fits to analyze the most recent Higgs data from ATLAS, CMS and Tevatron and compare the Standard Model (SM) prediction with natural extensions of the SM. In particular we study wide classes of composite Higgs models based on different coset structures (leading at low energy to different Higgs sectors including extra singlets and Higgs doublets) and different coupling structures of the elementary fermions to the strong sector. We point out in what situations the composite models could improve (or worsen) the fit to the data and compare with similar trends in the MSSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Incandela, Status of the CMS SM Higgs Search, talk given at Latest update in the search for the Higgs boson at CERN, CERN, Geneva, 4 July 2012

  2. F. Gianotti, Status of Standard Model Higgs searches in ATLAS, talk given at Latest update in the search for the Higgs boson at CERN, CERN, Geneva, 4 July 2012.

  3. K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  4. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

    ADS  Google Scholar 

  5. A. Pomarol and F. Riva, The Composite Higgs and Light Resonance Connection, JHEP 08 (2012) 135 [arXiv:1205.6434] [INSPIRE].

    Article  ADS  Google Scholar 

  6. B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].

    Article  ADS  Google Scholar 

  8. J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs Search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [INSPIRE].

    Article  ADS  Google Scholar 

  9. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs Results from Natural New Physics Perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs Suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Ellis and T. You, Global Analysis of Experimental Constraints on a Possible Higgs-Like Particle with Mass 125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].

    Article  ADS  Google Scholar 

  13. R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Supersymmetry, Eur. Phys. J. C 54 (2008) 617 [arXiv:0709.3985] [INSPIRE].

    Article  ADS  Google Scholar 

  14. R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs Sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings from LHC Data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].

    Article  ADS  Google Scholar 

  16. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections.

  17. CMS collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, PAS-HIG-12-015 [https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig12015TWiki].

  18. CMS collaboration, Observation of a new boson with a mass near 125 GeV, PAS-HIG-12-020 [https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig12020TWiki].

  19. CMS collaboration, Combination of SM, SM4, FP Higgs boson searches, PAS-HIG-12-008 [http://cdsweb.cern.ch/record/1429928/files/HIG-12-008-pas.pdf].

  20. K. Tackmann, Search for the Higgs boson in the diphoton decay channel with the ATLAS detector, talk given at 36 th International Conference for High Energy Physics - ICHEP2012, Melbourne Convention and Exhibition Centre, Melbourne, Australia, 4-11 July 2012.

  21. ATLAS collaboration, An update to the combined search for the Standard Model Higgs boson with the ATLAS detector at the LHC using up to 4.9 fb 1 of pp collision data at \( \sqrt{s}=7\;TeV \), ATLAS-CONF-2012-019 (2012).

  22. ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the gamma-gamma channel with the ATLAS detector, ATLAS-CONF-2012-091 (2012).

  23. Tevatron New Physics Higgs Working Group, CDF, D0 collaborations, C. Group, D. Collaborations, the Tevatron New Physics and H. Working, Updated Combination of CDF and D0 Searches for Standard Model Higgs Boson Production with up to 10.0 fb −1 of Data, arXiv:1207.0449 [INSPIRE].

  24. G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite Scalar Dark Matter, JHEP 07 (2012) 015 [arXiv:1204.2808] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A. Falkowski, Pseudo-goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [INSPIRE].

    ADS  Google Scholar 

  27. I. Low and A. Vichi, On the production of a composite Higgs boson, Phys. Rev. D 84 (2011) 045019 [arXiv:1010.2753] [INSPIRE].

    ADS  Google Scholar 

  28. A. Azatov and J. Galloway, Light Custodians and Higgs Physics in Composite Models, Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].

    ADS  Google Scholar 

  29. B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, Composite Higgs Sketch, arXiv:1205.4032 [INSPIRE].

  30. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for Invisible Higgs Decays with Global Fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].

    Article  ADS  Google Scholar 

  32. K. Cheung and T.-C. Yuan, Could the excess seen at 124-126 GeV be due to the Randall-Sundrum Radion?, Phys. Rev. Lett. 108 (2012) 141602 [arXiv:1112.4146] [INSPIRE].

    Article  ADS  Google Scholar 

  33. L. Vecchi, Phenomenology of a light scalar: the dilaton, Phys. Rev. D 82 (2010) 076009 [arXiv:1002.1721] [INSPIRE].

    ADS  Google Scholar 

  34. I. Low, J. Lykken and G. Shaughnessy, Have We Observed the Higgs (Imposter)?, arXiv:1207.1093 [INSPIRE].

  35. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].

    ADS  Google Scholar 

  36. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunters Guide, Front. Phys. 80 (2000) 1.

    Google Scholar 

  37. A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. Pich and P. Tuzon, Yukawa Alignment in the Two-Higgs-Doublet Model, Phys. Rev. D 80 (2009) 091702 [arXiv:0908.1554] [INSPIRE].

    ADS  Google Scholar 

  39. A. Arvanitaki and G. Villadoro, A Non Standard Model Higgs at the LHC as a Sign of Naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Azatov, S. Chang, N. Craig and J. Galloway, Early Higgs Hints for Non-Minimal Supersymmetry, arXiv:1206.1058 [INSPIRE].

  41. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  42. K. Blum, R.T. D’Agnolo and J. Fan, Natural SUSY Predicts: Higgs Couplings, arXiv:1206.5303 [INSPIRE].

  43. B. Bellazzini, C. Petersson and R. Torre, Photophilic Higgs from sgoldstino mixing, Phys. Rev. D 86 (2012) 033016 [arXiv:1207.0803] [INSPIRE].

    ADS  Google Scholar 

  44. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, arXiv:1207.1347 [INSPIRE].

  45. T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, arXiv:1207.1344 [INSPIRE].

  46. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE] [http://pdg.lbl.gov].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Montull.

Additional information

ArXiv ePrint: 1207.1716

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montull, M., Riva, F. Higgs discovery: the beginning or the end of natural EWSB?. J. High Energ. Phys. 2012, 18 (2012). https://doi.org/10.1007/JHEP11(2012)018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)018

Keywords

Navigation