Skip to main content
Log in

Zero sound in effective holographic theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate zero sound in D -dimensional effective holographic theories, whose action is given by Einstein-Maxwell-Dilaton terms. The bulk spacetimes include both zero temperature backgrounds with anisotropic scaling symmetry and their near-extremal counterparts obtained in 1006.2124 [hep-th], while the massless charge carriers are described by probe D-branes. We discuss thermodynamics of the probe D-branes analytically. In particular, we clarify the conditions under which the specific heat is linear in the temperature, which is a characteristic feature of Fermi liquids. We also compute the retarded Green’s functions in the limit of low frequency and low momentum and find quasiparticle excitations in certain regime of the parameters. The retarded Green’s functions are plotted at specific values of parameters in D = 4, where the specific heat is linear in the temperature and the quasi-particle excitation exists. We also calculate the AC conductivity in D -dimensions as a by-product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  4. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  7. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [SPIRES].

    Google Scholar 

  8. G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722 [SPIRES].

  9. S. Sachdev, Condensed matter and AdS/CFT, arXiv:1002.2947 [SPIRES].

  10. S.-S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [SPIRES].

    ADS  Google Scholar 

  11. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].

  12. M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS2, arXiv:0907.2694 [SPIRES].

  14. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  15. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  16. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [SPIRES].

    Article  Google Scholar 

  18. U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [SPIRES].

    Article  Google Scholar 

  19. S.S. Gubser, A. Nellore, S.S. Pufu and F.D. Rocha, Thermodynamics and bulk viscosity of approximate black hole duals to finite temperature quantum chromodynamics, Phys. Rev. Lett. 101 (2008) 131601 [arXiv:0804.1950] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Deconfinement and gluon plasma dynamics in improved holographic QCD, Phys. Rev. Lett. 101 (2008) 181601 [arXiv:0804.0899] [SPIRES].

    Article  ADS  Google Scholar 

  21. U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and thermodynamics of 5D dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [SPIRES].

    Article  Google Scholar 

  22. S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [SPIRES].

    ADS  Google Scholar 

  23. K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [SPIRES].

    Article  ADS  Google Scholar 

  24. J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [SPIRES].

    Article  ADS  Google Scholar 

  25. M. Cadoni, G. D’Appollonio and P. Pani, Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime, JHEP 03 (2010) 100 [arXiv:0912.3520] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. C.-M. Chen and D.-W. Pang, Holography of charged dilaton black holes in general dimensions, JHEP 06 (2010) 093 [arXiv:1003.5064] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. K. Goldstein et al., Holography of dyonic dilaton black branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [SPIRES].

    Article  ADS  Google Scholar 

  28. C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, arXiv:1005.4690 [SPIRES].

  29. B.-H. Lee, S. Nam, D.-W. Pang and C. Park, Conductivity in the anisotropic background, arXiv:1006.0779 [SPIRES].

  30. B.-H. Lee, D.-W. Pang and C. Park, Strange metallic behavior in anisotropic background, JHEP 07 (2010) 057 [arXiv:1006.1719] [SPIRES].

    Article  ADS  Google Scholar 

  31. Y. Liu and Y.-W. Sun, Holographic superconductors from Einstein-Maxwell-dilaton gravity, JHEP 07 (2010) 099 [arXiv:1006.2726] [SPIRES].

    Article  ADS  Google Scholar 

  32. U. Gürsoy, Gravity/spin-model correspondence and holographic superfluids, arXiv:1007. 4854 [SPIRES].

  33. T. Faulkner, G.T. Horowitz and M.M. Roberts, Holographic quantum criticality from multi-trace deformations, arXiv:1008.1581 [SPIRES].

  34. A. Bayntun, C.P. Burgess, B.P. Dolan and S.-S. Lee, AdS/QHE: towards a holographic description of quantum Hall experiments, arXiv:1008.1917 [SPIRES].

  35. M. Ali-Akbari and K.B. Fadafan, Conductivity at finite ’t Hooft coupling from AdS/CFT, arXiv:1008.2430 [SPIRES].

  36. D. Astefanesei, N. Banerjee and S. Dutta, Moduli and electromagnetic black brane holography, arXiv:1008.3852 [SPIRES].

  37. A. Karch, D.T. Son and A.O. Starinets, Zero Sound from Holography, arXiv:0806.3796 [SPIRES].

  38. M. Kulaxizi and A. Parnachev, Comments on Fermi liquid from holography, Phys. Rev. D 78 (2008) 086004 [arXiv:0808.3953] [SPIRES].

    ADS  Google Scholar 

  39. M. Kulaxizi and A. Parnachev, Holographic responses of fermion matter, Nucl. Phys. B 815 (2009) 125 [arXiv:0811.2262] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Karch, M. Kulaxizi and A. Parnachev, Notes on properties of holographic matter, JHEP 11 (2009) 017 [arXiv:0908.3493] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. B.-H. Lee and D.-W. Pang, Notes on properties of holographic strange metals, Phys. Rev. D 82 (2010) 104011 [arXiv:1006.4915] [SPIRES].

    ADS  Google Scholar 

  42. C. Hoyos-Badajoz, A. O’Bannon and J.M.S. Wu, Zero sound in strange metallic holography, JHEP 09 (2010) 086 [arXiv:1007.0590] [SPIRES].

    Article  ADS  Google Scholar 

  43. E. Perlmutter, Domain wall holography for finite temperature scaling solutions, arXiv:1006.2124 [SPIRES].

  44. G.W. Gibbons and K.-i. Maeda, Black holes and membranes in higher dimensional theories with dilaton fields, Nucl. Phys. B 298 (1988) 741 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. J. Preskill, P. Schwarz, A.D. Shapere, S. Trivedi and F. Wilczek, Limitations on the statistical description of black holes, Mod. Phys. Lett. A6 (1991) 2353 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991) 3140 [Erratum ibid. D 45 (1992) 3888] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  47. C.F.E. Holzhey and F. Wilczek, Black holes as elementary particles, Nucl. Phys. B 380 (1992) 447 [hep-th/9202014] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. K.C.K. Chan, J.H. Horne and R.B. Mann, Charged dilaton black holes with unusual asymptotics, Nucl. Phys. B 447 (1995) 441 [gr-qc/9502042] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional spacetimes, Phys. Rev. D 54 (1996) 4891 [gr-qc/9609065] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. R.-G. Cai, J.-Y. Ji and K.-S. Soh, Topological dilaton black holes, Phys. Rev. D 57 (1998) 6547 [gr-qc/9708063] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. C. Charmousis, B. Gouteraux and J. Soda, Einstein-Maxwell-dilaton theories with a Liouville potential, Phys. Rev. D 80 (2009) 024028 [arXiv:0905.3337] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  52. S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  53. M. Taylor, Non-relativistic holography, arXiv:0812.0530 [SPIRES].

  54. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. A. O’Bannon, Hall conductivity of flavor fields from AdS/CFT, Phys. Rev. D 76 (2007) 086007 [arXiv:0708.1994] [SPIRES].

    ADS  Google Scholar 

  58. S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [SPIRES].

    Article  ADS  Google Scholar 

  59. A. Karch and A. O’Bannon, Holographic thermodynamics at finite baryon density: some exact results, JHEP 11 (2007) 074 [arXiv:0709.0570] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  60. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  61. G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].

    Article  ADS  Google Scholar 

  62. C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and M-theory, Phys. Rev. D 75 (2007) 085020 [hep-th/0701036] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  63. H.J. Boonstra, K. Skenderis and P.K. Townsend, The domain wall/QFT correspondence, JHEP 01 (1999) 003 [hep-th/9807137] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  64. I. Kanitscheider, K. Skenderis and M. Taylor, Precision holography for non-conformal branes, JHEP 09 (2008) 094 [arXiv:0807.3324] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  65. S.S. Gubser, F.D. Rocha and P. Talavera, Normalizable fermion modes in a holographic superconductor, JHEP 10 (2010) 087 [arXiv:0911.3632] [SPIRES].

    Article  Google Scholar 

  66. T. Faulkner, G.T. Horowitz, J. McGreevy, M.M. Roberts and D. Vegh, Photoemission ’experiments’ on holographic superconductors, JHEP 03 (2010) 121 [arXiv:0911.3402] [SPIRES].

    Article  ADS  Google Scholar 

  67. T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, From black holes to strange metals, arXiv:1003.1728 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Wei Pang.

Additional information

ArXiv ePrint:1009.3966

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, BH., Pang, DW. & Park, C. Zero sound in effective holographic theories. J. High Energ. Phys. 2010, 120 (2010). https://doi.org/10.1007/JHEP11(2010)120

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)120

Keywords

Navigation