Skip to main content
Log in

Gluino decay as a probe of high scale supersymmetry breaking

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A supersymmetric standard model with heavier scalar supersymmetric particles has many attractive features. If the scalar mass scale is \( \mathcal{O} \)(10−104) TeV, the standard model like Higgs boson with mass around 125 GeV, which is strongly favored by the LHC experiment, can be realized. However, in this scenario the scalar particles are too heavy to be produced at the LHC. In addition, if the scalar mass is much less than \( \mathcal{O} \)(104) TeV, the lifetime of the gluino is too short to be measured. Therefore, it is hard to probe the scalar particles at a collider. However, a detailed study of the gluino decay reveals that two body decay of the gluino carries important information on the scalar scale. In this paper, we propose a test of this scenario by measuring the decay pattern of the gluino at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Combination of Higgs boson searches with up to 4.9 fb −1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC, ATLAS-CONF-2011-163 (2011).

  2. ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  3. CMS collaboration, Combination of SM Higgs searches, PAS-HIG-11-032 (2011).

  4. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  5. CMS collaboration, J. Incandela, Stauts of the CMS SM Higgs search, talk given at CERN Seminar, July 4, CERN, Switzerland (2012).

  6. ATLAS collaboration, F. Gianotti, Status of standard model Higgs searches at ATLAS, talk given at CERN Seminar, July 4, CERN, Switzerland (2012).

  7. Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  8. J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].

    ADS  Google Scholar 

  9. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

    Article  ADS  Google Scholar 

  10. Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric standard model, Phys. Lett. B 262 (1991) 54 [INSPIRE].

    ADS  Google Scholar 

  11. S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].

    ADS  Google Scholar 

  12. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    ADS  Google Scholar 

  13. P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].

    ADS  Google Scholar 

  14. H. Murayama, Y. Nomura, S. Shirai and K. Tobioka, Compact supersymmetry, arXiv:1206.4993 [INSPIRE].

  15. G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Ibe and T.T. Yanagida, The lightest Higgs boson mass in pure gravity mediation model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE].

    ADS  Google Scholar 

  17. M. Ibe, S. Matsumoto and T.T. Yanagida, Pure gravity mediation with m 3/2  = 10–100 TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE].

    ADS  Google Scholar 

  18. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    Article  ADS  Google Scholar 

  19. G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65–89] [hep-ph/0406088] [INSPIRE].

  20. N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

    Article  ADS  Google Scholar 

  23. L.J. Hall and Y. Nomura, Spread supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519] [INSPIRE].

    Article  ADS  Google Scholar 

  24. R. Saito and S. Shirai, Gravitational wave probe of high supersymmetry breaking scale, Phys. Lett. B 713 (2012) 237 [arXiv:1201.6589] [INSPIRE].

    ADS  Google Scholar 

  25. W. Kilian, T. Plehn, P. Richardson and E. Schmidt, Split supersymmetry at colliders, Eur. Phys. J. C 39 (2005) 229 [hep-ph/0408088] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Toharia and J.D. Wells, Gluino decays with heavier scalar superpartners, JHEP 02 (2006) 015 [hep-ph/0503175] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Asai, T. Moroi, K. Nishihara and T. Yanagida, Testing the anomaly mediation at the LHC, Phys. Lett. B 653 (2007) 81 [arXiv:0705.3086] [INSPIRE].

    ADS  Google Scholar 

  28. B.S. Acharya et al., Identifying multi-top events from gluino decay at the LHC, arXiv:0901.3367 [INSPIRE].

  29. L. Edelhauser, W. Porod and R.K. Singh, Spin discrimination in three-body decays, JHEP 08 (2010) 053 [arXiv:1005.3720] [INSPIRE].

    Article  ADS  Google Scholar 

  30. H.E. Haber and G.L. Kane, Gluino decays and experimental signatures, Nucl. Phys. B 232 (1984) 333 [INSPIRE].

    Article  ADS  Google Scholar 

  31. E. Ma and G.-G. Wong, Two-body radiative gluino decays, Mod. Phys. Lett. A 3 (1988) 1561 [INSPIRE].

    ADS  Google Scholar 

  32. R. Barbieri, G. Gamberini, G.F. Giudice and G. Ridolfi, Constraining supergravity models from gluino production, Nucl. Phys. B 301 (1988) 15 [INSPIRE].

    Article  ADS  Google Scholar 

  33. H. Baer, X. Tata and J. Woodside, Phenomenology of gluino decays via loops and top quark Yukawa coupling, Phys. Rev. D 42 (1990) 1568 [INSPIRE].

    ADS  Google Scholar 

  34. P. Gambino, G. Giudice and P. Slavich, Gluino decays in split supersymmetry, Nucl. Phys. B 726 (2005) 35 [hep-ph/0506214] [INSPIRE].

    Article  ADS  Google Scholar 

  35. R. Sato, S. Shirai and K. Tobioka, in preparation.

  36. H.-C. Cheng, J.L. Feng and N. Polonsky, Superoblique corrections and nondecoupling of supersymmetry breaking, Phys. Rev. D 56 (1997) 6875 [hep-ph/9706438] [INSPIRE].

    ADS  Google Scholar 

  37. M.M. Nojiri, D.M. Pierce and Y. Yamada, Slepton production as a probe of the squark mass scale, Phys. Rev. D 57 (1998) 1539 [hep-ph/9707244] [INSPIRE].

    ADS  Google Scholar 

  38. S. Kiyoura, M.M. Nojiri, D.M. Pierce and Y. Yamada, Radiative corrections to a supersymmetric relation: a new approach, Phys. Rev. D 58 (1998) 075002 [hep-ph/9803210] [INSPIRE].

    ADS  Google Scholar 

  39. E. Katz, L. Randall and S.-f. Su, Supersymmetric partners of oblique corrections, Nucl. Phys. B 536 (1998) 3 [hep-ph/9801416] [INSPIRE].

    Article  ADS  Google Scholar 

  40. Tevatron Electroweak Working Group, CDF and D0 collaboration, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb −1 of data, arXiv:1107.5255 [INSPIRE].

  41. S. Bethke, The 2009 world average of α s , Eur. Phys. J. C 64 (2009) 689 [arXiv:0908.1135] [INSPIRE].

    Article  ADS  Google Scholar 

  42. E. Richter-Was, AcerDET: a particle level fast simulation and reconstruction package for phenomenological studies on high p T physics at LHC, hep-ph/0207355 [INSPIRE].

  43. ATLAS collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, ATLAS-CONF-2012-033 (2012).

  44. ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experimentDetector, trigger and physics, arXiv:0901.0512 [INSPIRE].

  45. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

    Article  ADS  Google Scholar 

  46. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].

    Article  ADS  Google Scholar 

  47. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  48. F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: a Monte Carlo event generator for pp, \( \overline{p}p \) and e + e reactions, hep-ph/0312045 [INSPIRE].

  49. W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].

  50. S. Asai, E. Nakamura and S. Shirai, Discriminating minimal SUGRA and minimal gauge mediation models at the early LHC, JHEP 04 (2012) 003 [arXiv:1202.3584] [INSPIRE].

    Article  ADS  Google Scholar 

  51. J.T. Linnemann, Measures of significance in HEP and astrophysics, eConf C 030908 (2003) MOBT001 [physics/0312059] [INSPIRE].

    Google Scholar 

  52. N. Kersting, On measuring split-SUSY gaugino masses at the LHC, Eur. Phys. J. C 63 (2009) 23 [arXiv:0806.4238] [INSPIRE].

    Article  ADS  Google Scholar 

  53. E. Turlay, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring supersymmetry with heavy scalars, J. Phys. G 38 (2011) 035003 [arXiv:1011.0759] [INSPIRE].

    ADS  Google Scholar 

  54. XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, arXiv:1207.5988 [INSPIRE].

  55. M. Ibe, T. Moroi and T. Yanagida, Possible signals of Wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE].

    ADS  Google Scholar 

  56. S. Asai, T. Moroi and T. Yanagida, Test of anomaly mediation at the LHC, Phys. Lett. B 664 (2008) 185 [arXiv:0802.3725] [INSPIRE].

    ADS  Google Scholar 

  57. S. Asai et al., Mass measurement of the decaying bino at the LHC, Phys. Lett. B 672 (2009) 339 [arXiv:0807.4987] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohsaku Tobioka.

Additional information

ArXiv ePrint: 1207.3608

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, R., Shirai, S. & Tobioka, K. Gluino decay as a probe of high scale supersymmetry breaking. J. High Energ. Phys. 2012, 41 (2012). https://doi.org/10.1007/JHEP11(2012)041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)041

Keywords

Navigation