Skip to main content
Log in

Natural cutoffs and quantum tunneling from black hole horizon

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study tunneling of massless particles through quantum horizon of a Schwarzschild black hole where quantum gravity effects are taken into account. These effects are encoded in the existence of natural cutoffs as a minimal length, a minimal momentum and a maximal momentum through a generalized uncertainty principle. We study possible correlations between emitted particles to address the information loss problem. We focus also on the role played by these natural cutoffs on the tunneling rate through quantum horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Veneziano, A stringy nature needs just two constants, Europhys. Lett. 2 (1986) 199.

    Article  ADS  Google Scholar 

  2. D. Amati, M. Ciafaloni and G. Veneziano, Superstring collisions at planckian energies, Phys. Lett. B 197 (1987) 81 [INSPIRE].

    ADS  Google Scholar 

  3. D. Amati, M. Ciafaloni and G. Veneziano, Can space-time be probed below the string size?, Phys. Lett. B 216 (1989) 41 [INSPIRE].

    ADS  Google Scholar 

  4. D.J. Gross and P.F. Mende, The high-energy behavior of string scattering amplitudes, Phys. Lett. B 197 (1987) 129 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. K. Konishi, G. Paffuti and P. Provero, Minimum physical length and the generalized uncertainty principle in string theory, Phys. Lett. B 234 (1990) 276 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. R. Guida, K. Konishi and P. Provero, On the short distance behavior of string theories, Mod. Phys. Lett. A 6 (1991) 1487 [INSPIRE].

    ADS  Google Scholar 

  7. M. Kato, Particle theories with minimum observable length and open string theory, Phys. Lett. B 245 (1990) 43 [INSPIRE].

    ADS  Google Scholar 

  8. L.J. Garay, Quantum gravity and minimum length, Int. J. Mod. Phys. A 10 (1995) 145 [gr-qc/9403008] [INSPIRE].

    ADS  Google Scholar 

  9. S. Capozziello, G. Lambiase and G. Scarpetta, Generalized uncertainty principle from quantum geometry, Int. J. Theor. Phys. 39 (2000) 15 [gr-qc/9910017] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Maggiore, A generalized uncertainty principle in quantum gravity, Phys. Lett. B 304 (1993) 65 [hep-th/9301067] [INSPIRE].

    ADS  Google Scholar 

  11. M. Maggiore, The algebraic structure of the generalized uncertainty principle, Phys. Lett. B 319 (1993) 83 [hep-th/9309034] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. M. Maggiore, Quantum groups, gravity and the generalized uncertainty principle, Phys. Rev. D 49 (1994) 5182 [hep-th/9305163] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. S. Hossenfelder, Minimal length scale scenarios for quantum gravity, arXiv:1203.6191 [INSPIRE].

  14. S. Hossenfelder, Can we measure structures to a precision better than the Planck length?, Class. Quantum Grav. 29 (2012) 115011.

    Article  ADS  Google Scholar 

  15. F. Scardigli, Generalized uncertainty principle in quantum gravity from micro-black hole Gedanken experiment, Phys. Lett. B 452 (1999) 39 [hep-th/9904025] [INSPIRE].

    ADS  Google Scholar 

  16. G. Amelino-Camelia, Relativity in space-times with short distance structure governed by an observer independent (planckian) length scale, Int. J. Mod. Phys. D 11 (2002) 35 [gr-qc/0012051] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. G. Amelino-Camelia, Doubly special relativity, Nature 418 (2002) 34 [gr-qc/0207049] [INSPIRE].

    Article  ADS  Google Scholar 

  18. G. Amelino-Camelia, Doubly special relativity: first results and key open problems, Int. J. Mod. Phys. D 11 (2002) 1643 [gr-qc/0210063] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. J. Kowalski-Glikman, Introduction to doubly special relativity, Lect. Notes Phys. 669 (2005) 131 [hep-th/0405273].

    Article  ADS  Google Scholar 

  20. G. Amelino-Camelia, J. Kowalski-Glikman, G. Mandanici and A. Procaccini, Phenomenology of doubly special relativity, Int. J. Mod. Phys. A 20 (2005) 6007 [gr-qc/0312124] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. K. Imilkowska and J. Kowalski-Glikman, Doubly special relativity as a limit of gravity, Lect. Notes Phys. 702 (2006) 279 [gr-qc/0506084] [INSPIRE].

    Article  Google Scholar 

  22. J. Magueijo and L. Smolin, Lorentz invariance with an invariant energy scale, Phys. Rev. Lett. 88 (2002) 190403 [hep-th/0112090] [INSPIRE].

    Article  ADS  Google Scholar 

  23. J. Magueijo and L. Smolin, Generalized Lorentz invariance with an invariant energy scale, Phys. Rev. D 67 (2003) 044017 [gr-qc/0207085] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. J. Magueijo and L. Smolin, String theories with deformed energy momentum relations and a possible nontachyonic bosonic string, Phys. Rev. D 71 (2005) 026010 [hep-th/0401087] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. J. Cortes and J. Gamboa, Quantum uncertainty in doubly special relativity, Phys. Rev. D 71 (2005) 065015 [hep-th/0405285] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. H. Ohanian and R. Ruffini, Gravitation and spacetime, 2nd edition, W.W. Norton, U.S.A. (1994).

  27. R.J. Adler, P. Chen and D.I. Santiago, The generalized uncertainty principle and black hole remnants, Gen. Rel. Grav. 33 (2001) 2101 [gr-qc/0106080] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. G. Amelino-Camelia, M. Arzano, Y. Ling and G. Mandanici, Black-hole thermodynamics with modified dispersion relations and generalized uncertainty principles, Class. Quant. Grav. 23 (2006) 2585 [gr-qc/0506110] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. K. Nozari and A. Sefiedgar, Comparison of approaches to quantum correction of black hole thermodynamics, Phys. Lett. B 635 (2006) 156 [gr-qc/0601116] [INSPIRE].

    ADS  Google Scholar 

  30. K. Nozari and A. S. Sefiedgar, On the existence of the logarithmic correction term in black hole entropy-area relation, Gen. Rel. Grav. 39 (2007) 501 [gr-qc/0606046] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  31. K. Nozari and S. H. Mehdipour, Quantum gravity and recovery of information in black hole evaporation, Europhys. Lett. 84 (2008) 20008 [arXiv:0804.4221] [INSPIRE].

    Article  ADS  Google Scholar 

  32. K. Nozari and S. H. Mehdipour, Tunneling from noncommutative Schwarzschild black hole, Class. Quantum Grav. 25 (2008) 175015 [arXiv:0801.4074] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. K. Nozari and S.H. Mehdipour, Parikh-Wilczek tunneling from noncommutative higher dimensional black holes, JHEP 03 (2009) 061.

    Article  MathSciNet  ADS  Google Scholar 

  34. W. Kim, E.J. Son and M. Yoon, Thermodynamics of a black hole based on a generalized uncertainty principle, JHEP 01 (2008) 035 [arXiv:0711.0786] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  35. L. Xiang and X. Wen, Black hole thermodynamics with generalized uncertainty principle, JHEP 10 (2009) 046 [arXiv:0901.0603] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. R. Banerjee and S. Ghosh, Generalised uncertainty principle, remnant mass and singularity problem in black hole thermodynamics, Phys. Lett. B 688 (2010) 224 [arXiv:1002.2302] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. M.K. Parikh and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. 85 (2000) 5042 [hep-th/9907001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. K. Nozari and A. Etemadi, Minimal length, maximal momentum and Hilbert space representation of quantum mechanics, Phys. Rev. D 85 (2012) 104029 [arXiv:1205.0158] [INSPIRE].

    ADS  Google Scholar 

  39. H. Hinrichsen and A. Kempf, Maximal localization in the presence of minimal uncertainties in positions and momenta, J. Math. Phys. 37 (1996) 2121 [hep-th/9510144] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. A. Kempf, On quantum field theory with nonzero minimal uncertainties in positions and momenta, J. Math. Phys. 38 (1997) 1347 [hep-th/9602085] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. A. Kempf, Quantum field theory with nonzero minimal uncertainties in positions and momenta, hep-th/9405067 [INSPIRE].

  42. A.F. Ali, S. Das and E.C. Vagenas, Discreteness of space from the generalized uncertainty principle, Phys. Lett. B 678 (2009) 497 [arXiv:0906.5396] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. S. Das, E.C. Vagenas and A.F. Ali, Discreteness of space from GUP II: relativistic wave equations, Phys. Lett. B 690 (2010) 407 [Erratum ibid. 692 (2010) 342] [arXiv:1005.3368] [INSPIRE].

    ADS  Google Scholar 

  44. P. Pedram, K. Nozari and S. Taheri, The effects of minimal length and maximal momentum on the transition rate of ultra cold neutrons in gravitational field, JHEP 03 (2011) 093 [arXiv:1103.1015] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Kempf, G. Mangano and R.B. Mann, Hilbert space representation of the minimal length uncertainty relation, Phys. Rev. D 52 (1995) 1108 [hep-th/9412167] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  46. P. Kraus and F. Wilczek, Selfinteraction correction to black hole radiance, Nucl. Phys. B 433 (1995) 403 [gr-qc/9408003] [INSPIRE].

    Article  ADS  Google Scholar 

  47. E.C. Vagenas, Are extremal 2D black holes really frozen?, Phys. Lett. B 503 (2001) 399 [hep-th/0012134] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. E.C. Vagenas, Two-dimensional dilatonic black holes and Hawking radiation, Mod. Phys. Lett. A 17 (2002) 609 [hep-th/0108147] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. E.C. Vagenas, Semiclassical corrections to the Bekenstein-Hawking entropy of the BTZ black hole via selfgravitation, Phys. Lett. B 533 (2002) 302 [hep-th/0109108] [INSPIRE].

    ADS  Google Scholar 

  50. A.J.M. Medved, Radiation via tunneling in the charged BTZ black hole, Class. Quant. Grav. 19 (2002) 589 [hep-th/0110289] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. A.J.M. Medved, Radiation via tunneling from a de Sitter cosmological horizon, Phys. Rev. D 66 (2002) 124009 [hep-th/0207247] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  52. E.C. Vagenas, Generalization of the KKW analysis for black hole radiation, Phys. Lett. B 559 (2003) 65 [hep-th/0209185] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. M.K. Parikh, A secret tunnel through the horizon, Int. J. Mod. Phys. D 13 (2004) 2351 [hep-th/0405160] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  54. E.T. Akhmedov, V. Akhmedova and D. Singleton, Hawking temperature in the tunneling picture, Phys. Lett. B 642 (2006) 124 [hep-th/0608098] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. E.T. Akhmedov, V. Akhmedova, T. Pilling and D. Singleton, Thermal radiation of various gravitational backgrounds, Int. J. Mod. Phys. A 22 (2007) 1705 [hep-th/0605137] [INSPIRE].

    ADS  Google Scholar 

  56. E. Keski-Vakkuri and P. Kraus, Microcanonical D-branes and back reaction, Nucl. Phys. B 491 (1997) 249 [hep-th/9610045] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. M. Cavaglia and S. Das, How classical are TeV scale black holes?, Class. Quant. Grav. 21 (2004) 4511 [hep-th/0404050] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. V. Cardoso, M. Cavaglia and L. Gualtieri, Black hole particle emission in higher-dimensional spacetimes, Phys. Rev. Lett. 96 (2006) 071301 [Erratum ibid. 96 (2006) 219902] [hep-th/0512002] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. V. Cardoso, M. Cavaglia and L. Gualtieri, Hawking emission of gravitons in higher dimensions: non-rotating black holes, JHEP 02 (2006) 021 [hep-th/0512116] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kourosh Nozari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nozari, K., Saghafi, S. Natural cutoffs and quantum tunneling from black hole horizon. J. High Energ. Phys. 2012, 5 (2012). https://doi.org/10.1007/JHEP11(2012)005

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)005

Keywords

Navigation