Skip to main content
Log in

Top-quark forward-backward asymmetry in Randall-Sundrum models beyond the leading order

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We calculate the \( t\overline t \) forward-backward asymmetry, A t FB, in Randall-Sundrum (RS) models taking into account the dominant next-to-leading order (NLO) corrections in QCD. At Born level we include the exchange of Kaluza-Klein (KK) gluons and photons, the Z boson and its KK excitations, as well as the Higgs boson, whereas beyond the leading order (LO) we consider the interference of tree-level KK-gluon exchange with one-loop QCD box diagrams and the corresponding bremsstrahlungs corrections. We find that the strong suppression of LO effects, that arises due to the elementary nature and the mostly vector-like couplings of light quarks, is lifted at NLO after paying the price of an additional factor of α s /(4π). In spite of this enhancement, the resulting RS corrections in A t FB remain marginal, leaving the predicted asymmetry SM-like. As our arguments are solely based on the smallness of the axial-vector couplings of light quarks to the strong sector, our findings are model-independent and apply to many scenarios of new physics that address the flavor problem via geometrical sequestering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tevatron Electroweak Working Group and CDF and DØ collaboration, Combination of CDF and D0 Results on the Mass of the Top Quark, arXiv:0903.2503 [SPIRES].

  2. CDF collaboration, E. Thomson et al., Combination of Top Pair Production Cross Section Results, Conference Note 9913, October 19, 2009, http://www-cdf.fnal.gov/physics/new/top/2009/xsection/ttbar combined 46invfb/.

  3. DØ collaboration, Combination and interpretation of tt(bar) cross section measurements with the D0 detector, Conference Note 5907-CONF, March 12, 2009, http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/TOP/T79/.

  4. CDF collaboration, T. Aaltonen et al., Search for resonant \( t\overline t \) production in \( p\overline p \) collisions at \( \sqrt {s} = 1.96 - TeV \), Phys. Rev. Lett. 100 (2008) 231801 [arXiv:0709.0705] [SPIRES].

    Article  ADS  Google Scholar 

  5. CDF collaboration, T. Aaltonen et al., Limits on the production of narrow \( t\overline t \) resonances in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\,TeV \), Phys. Rev. D 77 (2008) 051102 [arXiv:0710.5335] [SPIRES].

    ADS  Google Scholar 

  6. DØ collaboration, V.M. Abazov et al., Search for \( t\overline t \) resonances in the lepton plus jets final state in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\,TeV \), Phys. Lett. B 668 (2008) 98 [arXiv:0804.3664] [SPIRES].

    ADS  Google Scholar 

  7. A. Bridgeman, Measurement of the \( t\overline t \) differential cross section, \( {{{d\sigma }} \left/ {{d{M_{t\overline t }}}} \right.} \) , in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\,TeV \), FERMILAB-THESIS-2008-50.

  8. CDF collaboration, T. Aaltonen et al., First Measurement of the \( t\overline t \) Differential Cross Section \( {{{d\sigma }} \left/ {{d{M_{t\overline t }}}} \right.} \) in c Collisions at \( \sqrt {s} = 1.96\,TeV \), Phys. Rev. Lett. 102 (2009) 222003 [arXiv: 0903.2850] [SPIRES].

    Article  ADS  Google Scholar 

  9. T.A. Schwarz, Measurement of the front back asymmetry in top-antitop quark pairs produced in proton-antiproton collisions at center of mass energy = 1.96 TeV, FERMILAB-THESIS-2006-51, UMI-32-38081.

  10. DØ collaboration, V.M. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [SPIRES].

    Article  ADS  Google Scholar 

  11. CDF collaboration, T. Aaltonen et al., Forward-Backward Asymmetry in Top Quark Production in \( p\overline p \) Collisions at \( \sqrt {s} = 1.96\,TeV \), Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [SPIRES].

    Article  ADS  Google Scholar 

  12. CDF collaboration, G. Strycker et al., Measurement of the Forward-Backward Asymmetry in Top Pair Production in 3.2/fb of \( p\overline p \) Collisions at \( \sqrt {s} = 1.96\,TeV \), CDF/ANAL/TOP/PUBLIC/9724Note, March 17, 2009, http://www-cdf.fnal.gov/physics/new/top/2009/tprop/Afb/.

  13. CDF collaboration, G. Strycker et al., Measurement of the Inclusive Forward-Backward Asymmetry and its Rapidity Dependence A fb(|Δy|) of tt Production in 5.3/fb of Tevatron Data, CDF/ANAL/TOP/PUBLIC/10224Note, July 14, 2010, http://www-cdf.fnal.gov/physics/new/top/2010/tprop/Afb/.

  14. DØ collaboration, Measurement of the forward-backward production asymmetry of t and \( \overline t \) quarks in \( p\overline p \to t\overline t \) events, Conference Note 6062-CONF, July 23, 2010, http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/TOP/T90/.

  15. J.H. Kühn and G. Rodrigo, Charge asymmetry in hadroproduction of heavy quarks, Phys. Rev. Lett. 81 (1998) 49 [hep-ph/9802268] [SPIRES].

    Article  ADS  Google Scholar 

  16. J.H. Kühn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D 59 (1999) 054017 [hep-ph/9807420] [SPIRES].

    ADS  Google Scholar 

  17. O. Antunano, J.H. Kühn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [SPIRES].

    ADS  Google Scholar 

  18. L.G. Almeida, G.F. Sterman and W. Vogelsang, Threshold Resummation for the Top Quark Charge Asymmetry, Phys. Rev. D 78 (2008) 014008 [arXiv:0805.1885] [SPIRES].

    ADS  Google Scholar 

  19. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-Group Improved Predictions for Top-Quark Pair Production at Hadron Colliders, JHEP 09 (2010) 097 [arXiv:1003.5827] [SPIRES].

    Article  ADS  Google Scholar 

  20. K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders, Nucl. Phys. B 840 (2010) 129 [arXiv:1004.3284] [SPIRES].

    Article  ADS  Google Scholar 

  21. A. Djouadi, G. Moreau, F. Richard and R.K. Singh, The forward-backward asymmetry of top quark production at the Tevatron in warped extra dimensional models, arXiv:0906.0604 [SPIRES].

  22. P. Ferrario and G. Rodrigo, Constraining heavy colored resonances from top-antitop quark events, Phys. Rev. D 80 (2009) 051701 [arXiv:0906.5541] [SPIRES].

    ADS  Google Scholar 

  23. S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [SPIRES].

    ADS  Google Scholar 

  24. K. Cheung, W.-Y. Keung and T.-C. Yuan, Top Quark Forward-Backward Asymmetry, Phys. Lett. B 682 (2009) 287 [arXiv:0908.2589] [SPIRES].

    ADS  Google Scholar 

  25. P.H. Frampton, J. Shu and K. Wang, A xigluon as Possible Explanation for \( p\overline p \to t\overline t \) Forward-Backward Asymmetry, Phys. Lett. B 683 (2010) 294 [arXiv:0911.2955] [SPIRES].

    Article  ADS  Google Scholar 

  26. J. Shu, T.M.P. Tait and K. Wang, Explorations of the Top Quark Forward-Backward Asymmetry at the Tevatron, Phys. Rev. D 81 (2010) 034012 [arXiv:0911.3237] [SPIRES].

    ADS  Google Scholar 

  27. A. Arhrib, R. Benbrik and C.-H. Chen, Forward-backward asymmetry of top quark in diquark models, Phys. Rev. D 82 (2010) 034034 [arXiv:0911.4875] [SPIRES].

    ADS  Google Scholar 

  28. I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand unification and the forward-backward asymmetry in top quark pair production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [SPIRES].

    ADS  Google Scholar 

  29. D.-W. Jung, P. Ko, J.S. Lee and S.-h. Nam, Model independent analysis of the forward-backward asymmetry of top quark production at the Tevatron, Phys. Lett. B 691 (2010) 238 [arXiv:0912.1105] [SPIRES].

    ADS  Google Scholar 

  30. J. Cao, Z. Heng, L. Wu and J.M. Yang, Top quark forward-backward asymmetry at the Tevatron: a comparative study in different new physics models, Phys. Rev. D 81 (2010) 014016 [arXiv:0912.1447] [SPIRES].

    ADS  Google Scholar 

  31. V. Barger, W.-Y. Keung and C.-T. Yu, Asymmetric Left-Right Model and the Top Pair Forward-Backward Asymmetry, Phys. Rev. D 81 (2010) 113009 [arXiv:1002.1048] [SPIRES].

    ADS  Google Scholar 

  32. Q.-H. Cao, D. McKeen, J.L. Rosner, G. Shaughnessy and C.E.M. Wagner, Forward-Backward Asymmetry of Top Quark Pair Production, Phys. Rev. D 81 (2010) 114004 [arXiv:1003.3461] [SPIRES].

    ADS  Google Scholar 

  33. B. Xiao, Y.-k. Wang and S.-h. Zhu, Forward-backward asymmetry and differential cross section of top quark in flavor violating Z model at \( \mathcal{O}\left( {\alpha_s^2{\alpha_X}} \right) \), Phys. Rev. D 82 (2010) 034026 [arXiv:1006.2510] [SPIRES].

    ADS  Google Scholar 

  34. R.S. Chivukula, E.H. Simmons and C.P. Yuan, A xigluons cannot explain the observed top quark forward-backward asymmetry, arXiv:1007.0260 [SPIRES].

  35. P. Ferrario and G. Rodrigo, Massive color-octet bosons and the charge asymmetries of top quarks at hadron colliders, Phys. Rev. D 78 (2008) 094018 [arXiv:0809.3354] [SPIRES].

    ADS  Google Scholar 

  36. P. Ferrario and G. Rodrigo, Heavy colored resonances in top-antitop + jet at the LHC, JHEP 02 (2010) 051 [arXiv:0912.0687] [SPIRES].

    Article  ADS  Google Scholar 

  37. C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [SPIRES].

    Article  ADS  Google Scholar 

  38. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [SPIRES].

    ADS  Google Scholar 

  40. H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  41. A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett. B 486 (2000) 153 [hep-ph/9911294] [SPIRES].

    ADS  Google Scholar 

  42. Y. Grossman and M. Neubert, Neutrino masses and mixings in non-factorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  43. S. Chang, J. Hisano, H. Nakano, N. Okada and M. Yamaguchi, Bulk standard model in the Randall-Sundrum background, Phys. Rev. D 62 (2000) 084025 [hep-ph/9912498] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  44. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. S.J. Huber and Q. Shafi, Fermion Masses, Mixings and Proton Decay in a Randall-Sundrum Model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [SPIRES].

    ADS  Google Scholar 

  46. S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269 [hep-ph/0303183] [SPIRES].

    Article  ADS  Google Scholar 

  47. K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [SPIRES].

    ADS  Google Scholar 

  48. M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor Physics in the Randall-Sundrum Model: II. Tree-Level Weak-Interaction Processes, JHEP 09 (2010) 017 [arXiv:0912.1625] [SPIRES].

    Article  ADS  Google Scholar 

  49. S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor Physics in the Randall-Sundrum Model: I. Theoretical Setup and Electroweak Precision Tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [SPIRES].

    Article  ADS  Google Scholar 

  50. K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [SPIRES].

    ADS  Google Scholar 

  51. M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, Δ F=2 Observables and Fine-Tuning in a Warped Extra Dimension with Custodial Protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [SPIRES].

    Article  ADS  Google Scholar 

  52. M. Bauer, S. Casagrande, L. Gründer, U. Haisch and M. Neubert, Little Randall-Sundrum models: ϵ K strikes again, Phys. Rev. D 79 (2009) 076001 [arXiv:0811.3678] [SPIRES].

    ADS  Google Scholar 

  53. S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, The Custodial Randall-Sundrum Model: from Precision Tests to Higgs Physics, JHEP 09 (2010) 014 [arXiv:1005.4315] [SPIRES].

    Article  ADS  Google Scholar 

  54. F.A. Berends, K.J.F. Gaemers and R. Gastmans, α3 -contribution to the angular asymmetry in e + e μ + μ , Nucl. Phys. B 63 (1973) 381 [SPIRES].

    ADS  Google Scholar 

  55. F.A. Berends, R. Kleiss, S. Jadach and Z. Was, QED Radiative Corrections to Electron-Positron Annihilation into Heavy Fermions, Acta Phys. Polon. B 14 (1983) 413 [SPIRES].

    Google Scholar 

  56. T. Hahn, CUBA: a library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  57. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].

    Article  ADS  Google Scholar 

  58. P. Nason, S. Dawson and R.K. Ellis, The Total Cross-Section for the Production of Heavy Quarks in Hadronic Collisions, Nucl. Phys. B 303 (1988) 607 [SPIRES].

    Article  ADS  Google Scholar 

  59. J. Campbell and R.K. Ellis, MCFM — A Monte Carlo for FeMtobarn processes at Hadron Colliders, http://mcfm.fnal.gov.

  60. M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC, JHEP 09 (2008) 127 [arXiv:0804.2800] [SPIRES].

    Article  ADS  Google Scholar 

  61. N. Kidonakis and R. Vogt, The theoretical top quark cross section at the Tevatron and the LHC, Phys. Rev. D 78 (2008) 074005 [arXiv:0805.3844] [SPIRES].

    ADS  Google Scholar 

  62. U. Langenfeld, S. Moch and P. Uwer, Measuring the running top-quark mass, Phys. Rev. D 80 (2009) 054009 [arXiv:0906.5273] [SPIRES].

    ADS  Google Scholar 

  63. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, T hreshold expansion at order α4 S for the \( t\overline t \) invariant mass distribution at hadron colliders, Phys. Lett. B 687 (2010) 331 [arXiv:0912.3375] [SPIRES].

    ADS  Google Scholar 

  64. W. Bernreuther and Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC, Nucl. Phys. B 837 (2010) 90 [arXiv:1003.3926] [SPIRES].

    Article  ADS  Google Scholar 

  65. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [SPIRES].

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Haisch.

Additional information

ArXiv ePrint:1008.0742

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, M., Goertz, F., Haisch, U. et al. Top-quark forward-backward asymmetry in Randall-Sundrum models beyond the leading order. J. High Energ. Phys. 2010, 39 (2010). https://doi.org/10.1007/JHEP11(2010)039

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)039

Keywords

Navigation