Skip to main content
Log in

Stochastic background of gravitational waves from fermions — Theory and applications

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Out-of-equilibrium fermions can be created in the early Universe by non-perturbative parametric effects, both at preheating or during the thermal era. An anisotropic stress is developed in the fermion distribution, acting as a source of a stochastic background of gravitational waves (GW). We derive a general formalism to calculate the spectrum of GW produced by an ensemble of fermions, which we apply to a variety of scenarios after inflation. We discuss in detail the regularization of the source, i.e. of the unequal-time-correlator of the fermions’ transverse-traceless anisotropic stress. We discuss how the GW spectrum builds up in time and present a simple parametrization of its final amplitude and peak frequency. We find that fermions may generate a GW background with a significant amplitude at very high frequencies, similarly to the case of preheating with scalar fields. A detection of this GW background would shed light on the physics of the very early Universe, but new technology at high frequencies is required, beyond the range accessible to currently planned detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Planck collaboration, P. Ade et al., Planck 2013 results. I. Overview of products and scientific results, arXiv:1303.5062 [INSPIRE].

  2. Planck collaboration, P. Ade et al., Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 [INSPIRE].

  3. R. Hulse and J. Taylor, Discovery of a pulsar in a binary system, Astrophys. J. 195 (1975) L51 [INSPIRE].

    Article  ADS  Google Scholar 

  4. J.M. Weisberg and J.H. Taylor, The relativistic binary pulsar B1913+16: thirty years of observations and analysis, ASP Conf. Ser. 328 (2005) 25.

    ADS  Google Scholar 

  5. B. Allen, The Stochastic gravity wave background: Sources and detection, in the proceedings of Relativistic gravitation and gravitational radiation, September 26–October 6, Les Houches, France (1995), gr-qc/9604033 [INSPIRE].

  6. M. Maggiore, Gravitational wave experiments and early universe cosmology, Phys. Rept. 331 (2000) 283 [gr-qc/9909001] [INSPIRE].

    Article  ADS  Google Scholar 

  7. T.L. Smith, E. Pierpaoli and M. Kamionkowski, A new cosmic microwave background constraint to primordial gravitational waves, Phys. Rev. Lett. 97 (2006) 021301 [astro-ph/0603144] [INSPIRE].

    Article  ADS  Google Scholar 

  8. F.A. Jenet et al., Upper bounds on the low-frequency stochastic gravitational wave background from pulsar timing observations: Current limits and future prospects, Astrophys. J. 653 (2006) 1571 [astro-ph/0609013] [INSPIRE].

    Article  ADS  Google Scholar 

  9. S. Sanidas, R. Battye and B. Stappers, Constraints on cosmic string tension imposed by the limit on the stochastic gravitational wave background from the European Pulsar Timing Array, Phys. Rev. D 85 (2012) 122003 [arXiv:1201.2419] [INSPIRE].

    ADS  Google Scholar 

  10. LIGO Scientific collaboration, B. Abbott et al., LIGO: The Laser interferometer gravitational-wave observatory, Rept. Prog. Phys. 72 (2009) 076901 [arXiv:0711.3041] [INSPIRE].

    Article  ADS  Google Scholar 

  11. LIGO home page, http://www.ligo.caltech.edu/.

  12. P. Amaro-Seoane et al., eLISA: astrophysics and cosmology in the milliHertz regime, arXiv:1201.3621 [INSPIRE].

  13. V. Corbin and N.J. Cornish, Detecting the cosmic gravitational wave background with the Big Bang observer, Class. Quant. Grav. 23 (2006) 2435 [gr-qc/0512039] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. G. Harry, P. Fritschel, D. Shaddock, W. Folkner and E. Phinney, Laser interferometry for the Big Bang observer, Class. Quant. Grav. 23 (2006) 4887 [Erratum ibid. 23 (2006) 7361] [INSPIRE].

  15. BBO home page, http://universe.nasa.gov/new/program/bbo.html.

  16. S. Kawamura et al., The Japanese space gravitational wave antenna DECIGO, Class. Quant. Grav. 23 (2006) S125 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Punturo et al., The Einstein telescope: a third-generation gravitational wave observatory, Class. Quant. Grav. 27 (2010) 194002.

    Article  ADS  Google Scholar 

  18. M. Kamionkowski, A. Kosowsky and A. Stebbins, A probe of primordial gravity waves and vorticity, Phys. Rev. Lett. 78 (1997) 2058 [astro-ph/9609132] [INSPIRE].

    Article  ADS  Google Scholar 

  19. U. Seljak and M. Zaldarriaga, Signature of gravity waves in polarization of the microwave background, Phys. Rev. Lett. 78 (1997) 2054 [astro-ph/9609169] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. García-Bellido, R. Durrer, E. Fenu, D.G. Figueroa and M. Kunz, The local B-polarization of the CMB: a very sensitive probe of cosmic defects, Phys. Lett. B 695 (2011) 26 [arXiv:1003.0299] [INSPIRE].

    Article  ADS  Google Scholar 

  21. http://bolo.berkeley.edu/polarbear/.

  22. http://quiet.uchicago.edu/.

  23. S. Khlebnikov and I. Tkachev, Relic gravitational waves produced after preheating, Phys. Rev. D 56 (1997) 653 [hep-ph/9701423] [INSPIRE].

    ADS  Google Scholar 

  24. R. Easther and E.A. Lim, Stochastic gravitational wave production after inflation, JCAP 04 (2006) 010 [astro-ph/0601617] [INSPIRE].

    ADS  Google Scholar 

  25. J. García-Bellido and D.G. Figueroa, A stochastic background of gravitational waves from hybrid preheating, Phys. Rev. Lett. 98 (2007) 061302 [astro-ph/0701014] [INSPIRE].

    Article  ADS  Google Scholar 

  26. J. García-Bellido, D.G. Figueroa and A. Sastre, A gravitational wave background from reheating after hybrid inflation, Phys. Rev. D 77 (2008) 043517 [arXiv:0707.0839] [INSPIRE].

    ADS  Google Scholar 

  27. J.F. Dufaux, A. Bergman, G.N. Felder, L. Kofman and J.-P. Uzan, Theory and numerics of gravitational waves from preheating after inflation, Phys. Rev. D 76 (2007) 123517 [arXiv:0707.0875] [INSPIRE].

    ADS  Google Scholar 

  28. J.-F. Dufaux, G. Felder, L. Kofman and O. Navros, Gravity waves from tachyonic preheating after hybrid inflation, JCAP 03 (2009) 001 [arXiv:0812.2917] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J.-F. Dufaux, D.G. Figueroa and J. García-Bellido, Gravitational waves from abelian gauge fields and cosmic strings at preheating, Phys. Rev. D 82 (2010) 083518 [arXiv:1006.0217] [INSPIRE].

    ADS  Google Scholar 

  30. A. Kosowsky, M.S. Turner and R. Watkins, Gravitational waves from first order cosmological phase transitions, Phys. Rev. Lett. 69 (1992) 2026 [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Kosowsky, M.S. Turner and R. Watkins, Gravitational radiation from colliding vacuum bubbles, Phys. Rev. D 45 (1992) 4514 [INSPIRE].

    ADS  Google Scholar 

  32. A. Kosowsky and M.S. Turner, Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions, Phys. Rev. D 47 (1993) 4372 [astro-ph/9211004] [INSPIRE].

    ADS  Google Scholar 

  33. M. Kamionkowski, A. Kosowsky and M.S. Turner, Gravitational radiation from first order phase transitions, Phys. Rev. D 49 (1994) 2837 [astro-ph/9310044] [INSPIRE].

    ADS  Google Scholar 

  34. R. Apreda, M. Maggiore, A. Nicolis and A. Riotto, Supersymmetric phase transitions and gravitational waves at LISA, Class. Quant. Grav. 18 (2001) L155 [hep-ph/0102140] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  35. A. Nicolis, Relic gravitational waves from colliding bubbles and cosmic turbulence, Class. Quant. Grav. 21 (2004) L27 [gr-qc/0303084] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. C. Grojean and G. Servant, Gravitational waves from phase transitions at the electroweak scale and beyond, Phys. Rev. D 75 (2007) 043507 [hep-ph/0607107] [INSPIRE].

    ADS  Google Scholar 

  37. C. Caprini, R. Durrer and G. Servant, Gravitational wave generation from bubble collisions in first-order phase transitions: an analytic approach, Phys. Rev. D 77 (2008) 124015 [arXiv:0711.2593] [INSPIRE].

    ADS  Google Scholar 

  38. C. Caprini, R. Durrer, T. Konstandin and G. Servant, General properties of the gravitational wave spectrum from phase transitions, Phys. Rev. D 79 (2009) 083519 [arXiv:0901.1661] [INSPIRE].

    ADS  Google Scholar 

  39. S.J. Huber and T. Konstandin, Gravitational wave production by collisions: more bubbles, JCAP 09 (2008) 022 [arXiv:0806.1828] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Gravitational waves from the sound of a first order phase transition, arXiv:1304.2433 [INSPIRE].

  41. A. Kosowsky, A. Mack and T. Kahniashvili, Gravitational radiation from cosmological turbulence, Phys. Rev. D 66 (2002) 024030 [astro-ph/0111483] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. A.D. Dolgov, D. Grasso and A. Nicolis, Relic backgrounds of gravitational waves from cosmic turbulence, Phys. Rev. D 66 (2002) 103505 [astro-ph/0206461] [INSPIRE].

    ADS  Google Scholar 

  43. G. Gogoberidze, T. Kahniashvili and A. Kosowsky, The spectrum of gravitational radiation from primordial turbulence, Phys. Rev. D 76 (2007) 083002 [arXiv:0705.1733] [INSPIRE].

    ADS  Google Scholar 

  44. C. Caprini and R. Durrer, Gravitational waves from stochastic relativistic sources: primordial turbulence and magnetic fields, Phys. Rev. D 74 (2006) 063521 [astro-ph/0603476] [INSPIRE].

    ADS  Google Scholar 

  45. C. Caprini, R. Durrer and G. Servant, The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition, JCAP 12 (2009) 024 [arXiv:0909.0622] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. Vilenkin, Gravitational radiation from cosmic strings, Phys. Lett. B 107 (1981) 47 [INSPIRE].

    Article  ADS  Google Scholar 

  47. T. Vachaspati and A. Vilenkin, Gravitational radiation from cosmic strings, Phys. Rev. D 31 (1985) 3052 [INSPIRE].

    ADS  Google Scholar 

  48. S. Olmez, V. Mandic and X. Siemens, Gravitational-wave stochastic background from kinks and cusps on cosmic strings, Phys. Rev. D 81 (2010) 104028 [arXiv:1004.0890] [INSPIRE].

    ADS  Google Scholar 

  49. K. Jones-Smith, L.M. Krauss and H. Mathur, A nearly scale invariant spectrum of gravitational radiation from global phase transitions, Phys. Rev. Lett. 100 (2008) 131302 [arXiv:0712.0778] [INSPIRE].

    Article  ADS  Google Scholar 

  50. E. Fenu, D.G. Figueroa, R. Durrer and J. García-Bellido, Gravitational waves from self-ordering scalar fields, JCAP 10 (2009) 005 [arXiv:0908.0425] [INSPIRE].

    Article  ADS  Google Scholar 

  51. D.G. Figueroa, M. Hindmarsh and J. Urrestilla, Exact scale-invariant background of gravitational waves from cosmic defects, Phys. Rev. Lett. 110 (2013) 101302 [arXiv:1212.5458] [INSPIRE].

    Article  ADS  Google Scholar 

  52. A.A. Starobinsky, Relict gravitation radiation spectrum and initial state of the universe (in Russian), JETP Lett. 30 (1979) 682 [INSPIRE].

  53. L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett. 73 (1994) 3195 [hep-th/9405187] [INSPIRE].

    Article  ADS  Google Scholar 

  54. L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].

    ADS  Google Scholar 

  55. P.B. Greene, L. Kofman, A.D. Linde and A.A. Starobinsky, Structure of resonance in preheating after inflation, Phys. Rev. D 56 (1997) 6175 [hep-ph/9705347] [INSPIRE].

    ADS  Google Scholar 

  56. J.H. Traschen and R.H. Brandenberger, Particle production during out-of-equilibrium phase transitions, Phys. Rev. D 42 (1990) 2491 [INSPIRE].

    ADS  Google Scholar 

  57. G.N. Felder et al., Dynamics of symmetry breaking and tachyonic preheating, Phys. Rev. Lett. 87 (2001) 011601 [hep-ph/0012142] [INSPIRE].

    Article  ADS  Google Scholar 

  58. G.N. Felder, L. Kofman and A.D. Linde, Tachyonic instability and dynamics of spontaneous symmetry breaking, Phys. Rev. D 64 (2001) 123517 [hep-th/0106179] [INSPIRE].

    ADS  Google Scholar 

  59. J. García-Bellido, M. Garcia Perez and A. Gonzalez-Arroyo, Symmetry breaking and false vacuum decay after hybrid inflation, Phys. Rev. D 67 (2003) 103501 [hep-ph/0208228] [INSPIRE].

    ADS  Google Scholar 

  60. E.J. Copeland, S. Pascoli and A. Rajantie, Dynamics of tachyonic preheating after hybrid inflation, Phys. Rev. D 65 (2002) 103517 [hep-ph/0202031] [INSPIRE].

    ADS  Google Scholar 

  61. J. Baacke, K. Heitmann and C. Patzold, Nonequilibrium dynamics of fermions in a spatially homogeneous scalar background field, Phys. Rev. D 58 (1998) 125013 [hep-ph/9806205] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  62. P.B. Greene and L. Kofman, Preheating of fermions, Phys. Lett. B 448 (1999) 6 [hep-ph/9807339] [INSPIRE].

    Article  ADS  Google Scholar 

  63. P.B. Greene and L. Kofman, On the theory of fermionic preheating, Phys. Rev. D 62 (2000) 123516 [hep-ph/0003018] [INSPIRE].

    ADS  Google Scholar 

  64. G. Giudice, M. Peloso, A. Riotto and I. Tkachev, Production of massive fermions at preheating and leptogenesis, JHEP 08 (1999) 014 [hep-ph/9905242] [INSPIRE].

    Article  ADS  Google Scholar 

  65. M. Peloso and L. Sorbo, Preheating of massive fermions after inflation: analytical results, JHEP 05 (2000) 016 [hep-ph/0003045] [INSPIRE].

    Article  ADS  Google Scholar 

  66. N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K. (1982).

    Book  MATH  Google Scholar 

  67. K. Enqvist, D.G. Figueroa and T. Meriniemi, Stochastic background of gravitational waves from fermions, Phys. Rev. D 86 (2012) 061301 [arXiv:1203.4943] [INSPIRE].

    ADS  Google Scholar 

  68. A.D. Linde, Particle physics and inflationary cosmology, Contemp. Concepts Phys. 5 (1990) 1 [hep-th/0503203] [INSPIRE].

    Google Scholar 

  69. D.G. Figueroa, J. García-Bellido and A. Rajantie, On the transverse-traceless projection in lattice simulations of gravitational wave production, JCAP 11 (2011) 015 [arXiv:1110.0337] [INSPIRE].

    Article  ADS  Google Scholar 

  70. J. García-Bellido, S. Mollerach and E. Roulet, Fermion production during preheating after hybrid inflation, JHEP 02 (2000) 034 [hep-ph/0002076] [INSPIRE].

    Article  ADS  Google Scholar 

  71. J. García-Bellido and E. Ruiz Morales, Particle production from symmetry breaking after inflation, Phys. Lett. B 536 (2002) 193 [hep-ph/0109230] [INSPIRE].

    Article  ADS  Google Scholar 

  72. F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the hot Big Bang, JCAP 06 (2009) 029 [arXiv:0812.3622] [INSPIRE].

    Article  ADS  Google Scholar 

  73. J. García-Bellido, D.G. Figueroa and J. Rubio, Preheating in the standard model with the Higgs-inflaton coupled to gravity, Phys. Rev. D 79 (2009) 063531 [arXiv:0812.4624] [INSPIRE].

    ADS  Google Scholar 

  74. D.G. Figueroa, Preheating the universe from the standard model Higgs, AIP Conf. Proc. 1241 (2010) 578 [arXiv:0911.1465] [INSPIRE].

    Article  ADS  Google Scholar 

  75. F. Bezrukov and M. Shaposhnikov, The standard model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].

    Article  ADS  Google Scholar 

  76. K. Enqvist, D.G. Figueroa and R.N. Lerner, Curvaton decay by resonant production of the standard model Higgs, JCAP 01 (2013) 040 [arXiv:1211.5028] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  77. K. Enqvist and M.S. Sloth, Adiabatic CMB perturbations in pre-Big Bang string cosmology, Nucl. Phys. B 626 (2002) 395 [hep-ph/0109214] [INSPIRE].

    Article  ADS  Google Scholar 

  78. D.H. Lyth and D. Wands, Generating the curvature perturbation without an inflaton, Phys. Lett. B 524 (2002) 5 [hep-ph/0110002] [INSPIRE].

    Article  ADS  Google Scholar 

  79. T. Moroi and T. Takahashi, Effects of cosmological moduli fields on cosmic microwave background, Phys. Lett. B 522 (2001) 215 [Erratum ibid. B 539 (2002) 303] [hep-ph/0110096] [INSPIRE].

  80. J. Berges, D. Gelfand and J. Pruschke, Quantum theory of fermion production after inflation, Phys. Rev. Lett. 107 (2011) 061301 [arXiv:1012.4632] [INSPIRE].

    Article  ADS  Google Scholar 

  81. P.M. Saffin and A. Tranberg, Real-time fermions for baryogenesis simulations, JHEP 07 (2011) 066 [arXiv:1105.5546] [INSPIRE].

    Article  ADS  Google Scholar 

  82. N. Barnaby et al., Gravity waves and non-Gaussian features from particle production in a sector gravitationally coupled to the inflaton, Phys. Rev. D 86 (2012) 103508 [arXiv:1206.6117] [INSPIRE].

    ADS  Google Scholar 

  83. L. Bethke, D.G. Figueroa and A. Rajantie, Anisotropies in the gravitational wave background from preheating, Phys. Rev. Lett. 111 (2013) 011301 [arXiv:1304.2657] [INSPIRE].

    Article  ADS  Google Scholar 

  84. L. Bethke, D.G. Figueroa and A. Rajantie, On the anisotropy of the gravitational wave background from massless preheating, arXiv:1309.1148 [INSPIRE].

  85. B. de Wit, Supergravity, hep-th/0212245 [INSPIRE].

  86. K. Chaicherdsakul, Quantum cosmological correlations in an inflating universe: can fermion and gauge fields loops give a scale free spectrum?, Phys. Rev. D 75 (2007) 063522 [hep-th/0611352] [INSPIRE].

    ADS  Google Scholar 

  87. M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, U.S.A. (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuukka Meriniemi.

Additional information

ArXiv ePrint: 1306.6911

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueroa, D.G., Meriniemi, T. Stochastic background of gravitational waves from fermions — Theory and applications. J. High Energ. Phys. 2013, 101 (2013). https://doi.org/10.1007/JHEP10(2013)101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)101

Keywords

Navigation