Skip to main content
Log in

Heterotic T-folds with a small number of neutral moduli

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss non-geometric supersymmetric heterotic string models in D=4, in the framework of the free fermionic construction. We perform a systematic scan of models with four a priori left-right asymmetric \( {{\mathbb{Z}}_2} \) projections and shifts. We analyze some 220 models, identifying 18 inequivalent classes and addressing variants generated by discrete torsions. They do not contain geometrical or trivial neutral moduli, apart from the dilaton. However, we show the existence of flat directions in the form of exactly marginal deformations and identify patterns of symmetry breaking where product gauge groups, realized at level one, are broken to their diagonal at higher level. We also describe an “inverse Gepner map” from Heterotic to Type II models that could be used, in certain non geometric settings, to define “effective” topological invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Graña, Flux compactifications in string theory: A Comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].

    Article  ADS  Google Scholar 

  2. M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M. Bianchi, S. Kovacs and G. Rossi, Instantons and Supersymmetry, Lect. Notes Phys. 737 (2008) 303 [hep-th/0703142] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. P. Anastasopoulos, M. Bianchi, J.F. Morales and G. Pradisi, (Unoriented) T-folds with few Ts, JHEP 06 (2009) 032 [arXiv:0901.0113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. G. Aldazabal, P.G. Camara, A. Font and L. Ibáñez, More dual fluxes and moduli fixing, JHEP 05 (2006) 070 [hep-th/0602089] [INSPIRE].

    Article  ADS  Google Scholar 

  7. F. Marchesano, D6-branes and torsion, JHEP 05 (2006) 019 [hep-th/0603210] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. R. Blumenhagen, S. Moster and E. Plauschinn, Moduli Stabilisation versus Chirality for MSSM like Type IIB Orientifolds, JHEP 01 (2008) 058 [arXiv:0711.3389] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. K. Narain, M. Sarmadi and C. Vafa, Asymmetric Orbifolds, Nucl. Phys. B 288 (1987) 551 [INSPIRE].

  10. M. Dine and E. Silverstein, New M-theory backgrounds with frozen moduli, Phys. Lett. (1997) [hep-th/9712166] [INSPIRE].

  11. A. Dabholkar and J.A. Harvey, String islands, JHEP 02 (1999) 006 [hep-th/9809122] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. A.E. Faraggi, Moduli fixing in realistic string vacua, Nucl. Phys. B 728 (2005) 83 [hep-th/0504016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. H. Kawai, D.C. Lewellen and S.H. Tye, Construction of Four-Dimensional Fermionic String Models, Phys. Rev. Lett. 57 (1986) 1832 [Erratum ibid. 58 (1987) 429] [INSPIRE].

  14. H. Kawai, D. Lewellen and S. Tye, Classification of Closed Fermionic String Models, Phys. Rev. D 34 (1986) 3794 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. H. Kawai, D.C. Lewellen and S.H. Tye, Construction of Fermionic String Models in Four-Dimensions, Nucl. Phys. B 288 (1987) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. I. Antoniadis, C. Bachas and C. Kounnas, Four-Dimensional Superstrings, Nucl. Phys. B 289 (1987) 87 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. I. Antoniadis and C. Bachas, 4-D Fermionic Superstrings with Arbitrary Twists, Nucl. Phys. B 298 (1988) 586 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. I. Antoniadis, J.R. Ellis, J. Hagelin and D.V. Nanopoulos, GUT Model Building with Fermionic Four-Dimensional Strings, Phys. Lett. B 205 (1988) 459 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Senechal, Search for four-dimensional string models. 1., Phys. Rev. D 39 (1989) 3717 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. A.E. Faraggi, D.V. Nanopoulos and K.-j. Yuan, A Standard Like Model in the 4D Free Fermionic String Formulation, Nucl. Phys. B 335 (1990) 347 [INSPIRE].

    Article  ADS  Google Scholar 

  21. I. Antoniadis, G. Leontaris and J. Rizos, A three generation SU(4) × O(4) string model, Phys. Lett. B 245 (1990) 161 [INSPIRE].

    Article  ADS  Google Scholar 

  22. A.E. Faraggi, Hierarchical top-bottom mass relation in a superstring derived standard-like model, Phys. Lett. B 274 (1992) 47 [INSPIRE].

    Article  ADS  Google Scholar 

  23. A.E. Faraggi, A new standard-like model in the four-dimensional free fermionic string formulation, Phys. Lett. B 278 (1992) 131 [INSPIRE].

    Article  ADS  Google Scholar 

  24. A.E. Faraggi, Aspects of nonrenormalizable terms in a superstring derived standard-like Model, Nucl. Phys. B 403 (1993) 101 [hep-th/9208023] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A.E. Faraggi, Custodial nonAbelian gauge symmetries in realistic superstring derived models, Phys. Lett. B 339 (1994) 223 [hep-ph/9408333] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. G. Cleaver, A. Faraggi and D.V. Nanopoulos, String derived MSSM and M-theory unification, Phys. Lett. B 455 (1999) 135 [hep-ph/9811427] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. G.B. Cleaver, A.E. Faraggi and C. Savage, Left-right symmetric heterotic string derived models, Phys. Rev. D 63 (2001) 066001 [hep-ph/0006331] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. G.B. Cleaver, A.E. Faraggi and S. Nooij, NAHE based string models with SU(4) × SU(2) × U(1)SO(10) subgroup, Nucl. Phys. B 672 (2003) 64 [hep-ph/0301037] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. G.B. Cleaver, A.E. Faraggi, E. Manno and C. Timirgaziu, Quasi-realistic heterotic-string models with vanishing one-loop cosmological constant and perturbatively broken supersymmetry?, Phys. Rev. D 78 (2008) 046009 [arXiv:0802.0470] [INSPIRE].

    ADS  Google Scholar 

  30. B. Assel, K. Christodoulides, A.E. Faraggi, C. Kounnas and J. Rizos, Classification of Heterotic Pati-Salam Models, Nucl. Phys. B 844 (2011) 365 [arXiv:1007.2268] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Bianchi and A. Sagnotti, Open strings and the relative modular group, Phys. Lett. B 231 (1989) 389 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. K. Narain, New Heterotic String Theories in Uncompactified Dimensions < 10, Phys. Lett. B 169 (1986) 41 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. K. Narain, M. Sarmadi and E. Witten, A Note on Toroidal Compactification of Heterotic String Theory, Nucl. Phys. B 279 (1987) 369 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept. 371 (2002) 1 [Erratum ibid. 376 (2003) 339-405] [hep-th/0204089] [INSPIRE].

  35. Y. Dolivet, B. Julia and C. Kounnas, Magic N = 2 supergravities from hyper-free superstrings, JHEP 02 (2008) 097 [arXiv:0712.2867] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. S. Ferrara and C. Kounnas, Extended supersymmetry in four-dimensional type II strings, Nucl. Phys. B 328 (1989) 406 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. E. Kiritsis, M. Lennek and B. Schellekens, Free Fermion Orientifolds, JHEP 02 (2009) 030 [arXiv:0811.0515] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. P. Candelas and R. Davies, New Calabi-Yau Manifolds with Small Hodge Numbers, Fortsch. Phys. 58 (2010) 383 [arXiv:0809.4681] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. C. Vafa and E. Witten, Dual string pairs with N = 1 and N = 2 supersymmetry in four-dimensions, Nucl. Phys. Proc. Suppl. 46 (1996) 225 [hep-th/9507050] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. R. Donagi, B.A. Ovrut, T. Pantev and D. Waldram, Standard model bundles on nonsimply connected Calabi-Yau threefolds, JHEP 08 (2001) 053 [hep-th/0008008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. V. Bouchard and R. Donagi, On a class of non-simply connected Calabi-Yau threefolds, Commun. Num. Theor. Phys. 2 (2008) 1 [arXiv:0704.3096] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  42. P.G. Camara, E. Dudas, T. Maillard and G. Pradisi, String instantons, fluxes and moduli stabilization, Nucl. Phys. B 795 (2008) 453 [arXiv:0710.3080] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. R. Donagi and K. Wendland, On orbifolds and free fermion constructions, J. Geom. Phys. 59 (2009) 942 [arXiv:0809.0330] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. P. Candelas, X. de la Ossa, Y.-H. He and B. Szendroi, Triadophilia: A Special Corner in the Landscape, Adv. Theor. Math. Phys. 12 (2008) 2 [arXiv:0706.3134] [INSPIRE].

    Google Scholar 

  45. V. Braun, P. Candelas and R. Davies, A Three-Generation Calabi-Yau Manifold with Small Hodge Numbers, Fortsch. Phys. 58 (2010) 467 [arXiv:0910.5464] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. D. Gepner, Exactly Solvable String Compactifications on Manifolds of SU(N) Holonomy, Phys. Lett. B 199 (1987) 380 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. D. Gepner, Space-Time Supersymmetry in Compactified String Theory and Superconformal Models, Nucl. Phys. B 296 (1988) 757 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. A. Schellekens and S. Yankielowicz, Extended Chiral Algebras and Modular Invariant Partition Functions, Nucl. Phys. B 327 (1989) 673 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. A. Schellekens and S. Yankielowicz, Modular invariants from simple currents: an explicit proof, Phys. Lett. B 227 (1989) 387 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. A.E. Faraggi and D.V. Nanopoulos, Naturalness of three generations in free fermionic \( Z_2^n\otimes {Z_4} \) string models, Phys. Rev. D 48 (1993) 3288 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. M. Bianchi, Rottura della simmetria nelle compattificazioni delle teorie di stringhe aperte, Ph.D. Thesis, University of Rome “Tor Vergata”, 1992, ROM2F-92-13.

  52. M. Bianchi and A. Sagnotti, On the systematics of open string theories, Phys. Lett. B 247 (1990) 517 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. A.E. Faraggi, C. Kounnas and J. Rizos, Spinor-vector duality in N = 2 heterotic string vacua, Nucl. Phys. B 799 (2008) 19 [arXiv:0712.0747] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. T. Catelin-Jullien, A.E. Faraggi, C. Kounnas and J. Rizos, Spinor-Vector Duality in Heterotic SUSY Vacua, Nucl. Phys. B 812 (2009) 103 [arXiv:0807.4084] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. C. Angelantonj, A.E. Faraggi and M. Tsulaia, Spinor-Vector Duality in Heterotic String Orbifolds, JHEP 07 (2010) 004 [arXiv:1003.5801] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. A.E. Faraggi, I. Florakis, T. Mohaupt and M. Tsulaia, Conformal Aspects of Spinor-Vector Duality, Nucl. Phys. B 848 (2011) 332 [arXiv:1101.4194] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic Line Bundle Standard Models, JHEP 06 (2012) 113 [arXiv:1202.1757] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Atiyah Class and Complex Structure Stabilization in Heterotic Calabi-Yau Compactifications, JHEP 10 (2011) 032 [arXiv:1107.5076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two Hundred Heterotic Standard Models on Smooth Calabi-Yau Threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].

    ADS  Google Scholar 

  60. J.L. Lopez, D.V. Nanopoulos and K.-J. Yuan, Moduli and Kähler potential in fermionic strings, Phys. Rev. D 50 (1994) 4060 [hep-th/9405120] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  61. C. Angelantonj, C. Condeescu, E. Dudas and G. Pradisi, Non-perturbative transitions among intersecting-brane vacua, JHEP 07 (2011) 123 [arXiv:1105.3465] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. D. Cremades, L. Ibáñez and F. Marchesano, Intersecting brane models of particle physics and the Higgs mechanism, JHEP 07 (2002) 022 [hep-th/0203160] [INSPIRE].

    Article  ADS  Google Scholar 

  63. M. Cvetič, G. Shiu and A.M. Uranga, Three family supersymmetric standard-like models from intersecting brane worlds, Phys. Rev. Lett. 87 (2001) 201801 [hep-th/0107143] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. R. Blumenhagen, L. Görlich and T. Ott, Supersymmetric intersecting branes on the type IIA T 6 /Z 4 orientifold, JHEP 01 (2003) 021 [hep-th/0211059] [INSPIRE].

    Article  ADS  Google Scholar 

  65. P.H. Ginsparg, Applied conformal field theory, hep-th/9108028 [INSPIRE].

  66. M. Bianchi, The heterotic counterpart of brane recombination, in preparation

  67. J. McOrist, D.R. Morrison and S. Sethi, Geometries, Non-Geometries, and Fluxes, Adv. Theor. Math. Phys. 14 (2010) 1515 [arXiv:1004.5447] [INSPIRE].

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Timirgaziu.

Additional information

ArXiv ePrint: 1207.2665

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchi, M., Pradisi, G., Timirgaziu, C. et al. Heterotic T-folds with a small number of neutral moduli. J. High Energ. Phys. 2012, 89 (2012). https://doi.org/10.1007/JHEP10(2012)089

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)089

Keywords

Navigation