Skip to main content
Log in

Lattice potentials and fermions in holographic non Fermi-liquids: hybridizing local quantum criticality

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study lattice effects in strongly coupled systems of fermions at a finite density described by a holographic dual consisting of fermions in Anti-de-Sitter space in the presence of a Reissner-Nordström black hole. The lattice effect is encoded by a periodic modulation of the chemical potential with a wavelength of order of the intrinsic length scales of the system. This corresponds with a highly complicated “band structure” problem in AdS, which we only manage to solve in the weak potential limit. The “domain wall” fermions in AdS encoding for the Fermi surfaces in the boundary field theory diffract as usually against the periodic lattice, giving rise to band gaps. However, the deep infrared of the field theory as encoded by the near horizon AdS2 geometry in the bulk reacts in a surprising way to the weak potential. The hybridization of the fermions bulk dualizes into a linear combination of CFT1 “local quantum critical” propagators in the bulk, characterized by momentum dependent exponents displaced by lattice Umklapp vectors. This has the consequence that the metals showing quasi-Fermi surfaces cannot be localized in band insulators. In the AdS2 metal regime, where the conformal dimension of the fermionic operator is large and no Fermi surfaces are present at low T/μ, the lattice gives rise to a characteristic dependence of the energy scaling as a function of momentum. We predict crossovers from a high energy standard momentum AdS2 scaling to a low energy regime where exponents found associated with momenta “backscattered” to a lower Brillioun zone in the extended zone scheme. We comment on how these findings can be used as a unique fingerprint for the detection of AdS2 like “pseudogap metals” in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].

    ADS  Google Scholar 

  2. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].

    ADS  Google Scholar 

  3. M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].

    ADS  Google Scholar 

  5. R.-H. He et al., From a single-band metal to a high-temperature superconductor via two thermal phase transitions, Science 331 (2011) 1579 [arXiv:1103.2329] [arXiv:1103.2363].

    Article  ADS  Google Scholar 

  6. Y. Kohsaka et al., How Cooper pairs vanish approaching the Mott insulator in Bi 22Sr 2 CaCu 2 O 8+δ, Nature 454 (2008) 1072 [arXiv:0808.3816].

    Article  ADS  Google Scholar 

  7. N. Mannella et al., Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites, Nature 438 (2005) 474 [cond-mat/0510423].

    Article  ADS  Google Scholar 

  8. H.M. Rønnow et al., Polarons and confinement of electronic motion to two dimensions in a layered manganite, Nature 440 (2006) 1025 [cond-mat/0511138].

    Article  ADS  Google Scholar 

  9. F. Massee et al., Bilayer manganites reveal polarons in the midst of a metallic breakdown, Nature Physics 7 (2011) 978 [arXiv:1103.3804].

    Article  ADS  Google Scholar 

  10. J.P. Gauntlett, J. Sonner and D. Waldram, Universal fermionic spectral functions from string theory, Phys. Rev. Lett. 107 (2011) 241601 [arXiv:1106.4694] [INSPIRE].

    Article  ADS  Google Scholar 

  11. R. Belliard, S.S. Gubser and A. Yarom, Absence of a Fermi surface in classical minimal four-dimensional gauged supergravity, JHEP 10 (2011) 055 [arXiv:1106.6030] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. J.P. Gauntlett, J. Sonner and D. Waldram, Spectral function of the supersymmetry current, JHEP 11 (2011) 153 [arXiv:1108.1205] [INSPIRE].

    Article  ADS  Google Scholar 

  13. T. Faulkner and J. Polchinski, Semi-holographic Fermi liquids, JHEP 06 (2011) 012 [arXiv:1001.5049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].

    Article  ADS  Google Scholar 

  15. S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev. D 83 (2011) 046003 [arXiv:1008.2828] [INSPIRE].

    ADS  Google Scholar 

  16. M. Cubrovic, J. Zaanen and K. Schalm, Constructing the AdS dual of a Fermi liquid: AdS black holes with Dirac hair, JHEP 10 (2011) 017 [arXiv:1012.5681] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Cubrovic, Y. Liu, K. Schalm, Y.-W. Sun and J. Zaanen, Spectral probes of the holographic Fermi groundstate: dialing between the electron star and AdS Dirac hair, Phys. Rev. D 84 (2011) 086002 [arXiv:1106.1798] [INSPIRE].

    ADS  Google Scholar 

  18. S. Sachdev, A model of a Fermi liquid using gauge-gravity duality, Phys. Rev. D 84 (2011) 066009 [arXiv:1107.5321] [INSPIRE].

    ADS  Google Scholar 

  19. A. Allais, J. McGreevy and S.J. Suh, A quantum electron star, Phys. Rev. Lett. 108 (2012) 231602 [arXiv:1202.5308] [INSPIRE].

    Article  ADS  Google Scholar 

  20. S.A. Hartnoll and D.M. Hofman, Locally critical resistivities from Umklapp scattering, Phys. Rev. Lett. 108 (2012) 241601 [arXiv:1201.3917] [INSPIRE].

    Article  ADS  Google Scholar 

  21. G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Aperis et al., Holographic charge density waves, Phys. Lett. B 702 (2011) 181 [arXiv:1009.6179] [INSPIRE].

    ADS  Google Scholar 

  23. R. Flauger, E. Pajer and S. Papanikolaou, A striped holographic superconductor, Phys. Rev. D 83 (2011) 064009 [arXiv:1010.1775] [INSPIRE].

    ADS  Google Scholar 

  24. V. Keranen, E. Keski-Vakkuri, S. Nowling and K. Yogendran, Inhomogeneous structures in holographic superfluids: I. Dark solitons, Phys. Rev. D 81 (2010) 126011 [arXiv:0911.1866] [INSPIRE].

    ADS  Google Scholar 

  25. G.T. Horowitz, J.E. Santos and B. Way, A holographic josephson junction, Phys. Rev. Lett. 106 (2011) 221601 [arXiv:1101.3326] [INSPIRE].

    Article  ADS  Google Scholar 

  26. K. Maeda, T. Okamura and J.-i. Koga, Inhomogeneous charged black hole solutions in asymptotically Anti-de Sitter spacetime, Phys. Rev. D 85 (2012) 066003 [arXiv:1107.3677] [INSPIRE].

    ADS  Google Scholar 

  27. J.A. Hutasoit, S. Ganguli, G. Siopsis and J. Therrien, Strongly coupled striped superconductor with large modulation, JHEP 02 (2012) 086 [arXiv:1110.4632] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A.M. Garcia-Garcia, J.E. Santos and B. Way, Holographic description of finite size effects in strongly coupled superconductors, Phys. Rev. B 86 (2012) 064526 [arXiv:1204.4189] [INSPIRE].

    ADS  Google Scholar 

  29. S. Ganguli, J.A. Hutasoit and G. Siopsis, Enhancement of critical temperature of a striped holographic superconductor, arXiv:1205.3107 [INSPIRE].

  30. S. Kachru, A. Karch and S. Yaida, Holographic lattices, dimers and glasses, Phys. Rev. D 81 (2010) 026007 [arXiv:0909.2639] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. S. Bolognesi and D. Tong, Monopoles and holography, JHEP 01 (2011) 153 [arXiv:1010.4178] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. N. Iqbal, H. Liu and M. Mezei, Semi-local quantum liquids, JHEP 04 (2012) 086 [arXiv:1105.4621] [INSPIRE].

    Article  ADS  Google Scholar 

  33. T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Strange metal transport realized by gauge/gravity duality, Science 329 (2010) 1043 [INSPIRE].

    Article  ADS  Google Scholar 

  34. H. Takagi et al., Systematic evolution of temperature-dependent resistivity in La 2−x Sr x CuO 4, Phys. Rev. Lett. 69 (1992) 2975.

    Article  ADS  Google Scholar 

  35. J.M. Tranquada et al., Evidence for unusual superconducting correlations coexisting with stripe order in La 1.875 Ba 0.125 CuO 4, Phys. Rev. B 78 (2008) 174529 [arXiv:0809.0711].

    ADS  Google Scholar 

  36. Y. Tokura, Critical features of colossal magnetoresistive manganites, Rept. Prog. Phys. 69 (2006) 797.

    Article  ADS  Google Scholar 

  37. T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Holographic non-Fermi liquid fixed points, arXiv:1101.0597 [INSPIRE].

  38. T. Faulkner, G.T. Horowitz, J. McGreevy, M.M. Roberts and D. Vegh, Photoemissionexperimentson holographic superconductors, JHEP 03 (2010) 121 [arXiv:0911.3402] [INSPIRE].

    Article  ADS  Google Scholar 

  39. V. Alexandrov and P. Coleman, Spin and holographic metals, arXiv:1204.6310 [INSPIRE].

  40. C.P. Herzog and J. Ren, The spin of holographic electrons at nonzero density and temperature, JHEP 06 (2012) 078 [arXiv:1204.0518] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S.S. Gubser, F.D. Rocha and P. Talavera, Normalizable fermion modes in a holographic superconductor, JHEP 10 (2010) 087 [arXiv:0911.3632] [INSPIRE].

    Article  ADS  Google Scholar 

  42. D. Vegh, Fermi arcs from holography, arXiv:1007.0246 [INSPIRE].

  43. F. Benini, C.P. Herzog, R. Rahman and A. Yarom, Gauge gravity duality for d-wave superconductors: prospects and challenges, JHEP 11 (2010) 137 [arXiv:1007.1981] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].

    ADS  Google Scholar 

  45. A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].

    Article  ADS  Google Scholar 

  46. O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP 10 (2011) 034 [arXiv:1106.3883] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S. Kachru, A. Karch and S. Yaida, Adventures in holographic dimer models, New J. Phys. 13 (2011) 035004 [arXiv:1009.3268] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Wen Sun.

Additional information

ArXiv ePrint: 1205.5227

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Schalm, K., Sun, YW. et al. Lattice potentials and fermions in holographic non Fermi-liquids: hybridizing local quantum criticality. J. High Energ. Phys. 2012, 36 (2012). https://doi.org/10.1007/JHEP10(2012)036

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)036

Keywords

Navigation