Skip to main content
Log in

Deformed Skyrme crystals

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The Skyrme crystal, a solution of the Skyrme model, is the lowest energy-per-charge configuration of skyrmions seen so far. Our numerical investigations show that, as the period in various space directions is changed, one obtains various other configurations, such as a double square wall, and parallel vortex-like solutions. We also show that there is a sudden “phase transition” between a Skyrme crystal and the charge 4 skyrmion with cubic symmetry as the period is gradually increased in all three space directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.H.R. Skyrme, A Nonlinear field theory, Proc. Roy. Soc. Lond. A 260 (1961) 127 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. E. Witten, Current algebra, baryons and quark confinement, Nucl. Phys. B 223 (1983) 433 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. E. Witten, Baryons in the 1/n expansion, Nucl. Phys. B 160 (1979) 57 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. N. Manton and P. Sutcliffe, Topological solitons, Cambridge University Press, Cambridge U.K. (2004).

    Book  MATH  Google Scholar 

  5. I.R. Klebanov, Nuclear matter in the Skyrme model, Nucl. Phys. B 262 (1985) 133 [SPIRES].

    Article  ADS  Google Scholar 

  6. A.S. Goldhaber and N.S. Manton, Maximal symmetry of the Skyrme crystal, Phys. Lett. B 198 (1987) 231 [SPIRES].

    ADS  Google Scholar 

  7. A.D. Jackson and J.J.M. Verbaarschot, Phase structure of the Skyrme model, Nucl. Phys. A 484 (1988) 419 [SPIRES].

    ADS  Google Scholar 

  8. L. Castillejo, P.S.J. Jones, A.D. Jackson, J.J.M. Verbaarschot and A. Jackson, Dense skyrmion systems, Nucl. Phys. A 501 (1989) 801 [SPIRES].

    ADS  Google Scholar 

  9. M. Kugler and S. Shtrikman, A new skyrmion crystal, Phys. Lett. B 208 (1988) 491 [SPIRES].

    ADS  Google Scholar 

  10. M. Kugler and S. Shtrikman, Skyrmion crystals and their symmetries, Phys. Rev. D 40 (1989) 3421 [SPIRES].

    ADS  Google Scholar 

  11. D. Harland and R.S. Ward, Chains of skyrmions, JHEP 12 (2008) 093 [arXiv:0807.3870] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. J. Silva Lobo and R.S. Ward, Skyrmion multi-walls, J. Phys. A 42 (2009) 482001 [arXiv:0910.5457] [SPIRES].

    MathSciNet  Google Scholar 

  13. R.A. Battye and P.M. Sutcliffe, A Skyrme lattice with hexagonal symmetry, Phys. Lett. B 416 (1998) 385 [hep-th/9709221] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. L.D. Faddeev, Some comments on the many dimensional solitons, Lett. Math. Phys. 1 (1976) 289 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical recipes in FORT RA N 77, Cambridge University Press, Cambridge U.K. (1992).

    Google Scholar 

  16. A. Visintin, Differential models of hysteresis, Springer-Verlag, Berlin Germany (1994).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Silva Lobo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva Lobo, J. Deformed Skyrme crystals. J. High Energ. Phys. 2010, 29 (2010). https://doi.org/10.1007/JHEP10(2010)029

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2010)029

Keywords

Navigation