Skip to main content
Log in

Hori-Vafa mirror periods, Picard-Fuchs equations, and Berglund-Hübsch-Krawitz duality

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

This paper discusses the overlap of the Hori-Vafa formulation of mirror symmetry with some other constructions. We focus on compact Calabi-Yau hypersurfaces \( {\mathcal{M}_{\,G}} = \left\{ {G = 0} \right\} \) in weighted complex projective spaces. The Hori-Vafa formalism relates a family \( \left\{ {{M_G} \in WCP_{{Q_1}, \ldots, {Q_m}}^{m - 1}\left[ s \right]\left| {\sum\nolimits_{i = 1}^m {{Q_i} = s} } \right.} \right\} \) Ginzburg mirror theory. A technique suggested by Hori and Vafa allows the Picard-Fuchs equations satisfied by the corresponding mirror periods to be determined. Some examples in which the variety \( {\mathcal{M}_G} \) is crepantly resolved are considered. The resulting Picard-Fuchs equations agree with those found elsewhere working in the Batyrev-Borisov framework. When G is an invertible nondegenerate quasihomogeneous polynomial, the Chiodo-Ruan geometrical interpretation of Berglund-Hübsch-Krawitz duality can be used to associate a particular complex structure for \( {\mathcal{M}_G} \) with a particular Kähler structure for the mirror \( {\tilde{\mathcal{M}}_G} \). We make this association for such G when the ambient space of \( {\mathcal{M}_G} \) is CP 2, CP 3, and CP 4. Finally, we probe some of the resulting mirror Kähler structures by determining corresponding Picard-Fuchs equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Phases of N =2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. D.R. Morrison and M. Plesser, Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys. B 440 (1995) 279 [hep-th/9412236] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [ inSPIRE].

  4. S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, Commun. Math. Phys. 167 (1995) 301 [hep-th/9308122] [ inSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. B.H. Lian and S.-T. Yau, Mirror maps, modular relations and hypergeometric series. 2., Nucl. Phys. Proc. Suppl. 46 (1996) 248 [hep-th/9507153] [ inSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, alg-geom/9310003 [ inSPIRE].

  7. L.A. Borisov, Towards the mirror symmetry for Calabi-Yau complete intersections in Gorenstein toric Fano varieties, alg-geom/9310001.

  8. B.R. Greene and M. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys. B 338 (1990) 15 [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. B.R. Greene and M. Plesser, Mirror manifolds: a brief review and progress report, hep-th/9110014 [ inSPIRE].

  10. P. Berglund and T. Hübsch, A generalized construction of mirror manifolds, Nucl. Phys. B 393 (1993) 377 [hep-th/9201014] [ inSPIRE].

    Article  ADS  Google Scholar 

  11. M. Krawitz, FJRW rings and Landau-Ginzburg mirror symmetry, arXiv:0906.0796.

  12. A. Chiodo and Y. Ruan, LG/CY correspondence: the state space isomorphism, Adv. Math. 227 (2011) 2157 [arXiv:0908.0908].

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Fan, T.J. Jarvis and Y. Ruan, Geometry and analysis of spin equations, Comm. Pure Appl. Math. 61 (2008) 745 [math.DG/0409434].

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Fan, T.J. Jarvis and Y. Ruan, The Witten equation, mirror symmetry and quantum singularity theory, arXiv:0712.4021 [ inSPIRE].

  15. H. Fan, T.J. Jarvis and Y. Ruan, The Witten equation and its virtual fundamental cycle, arXiv:0712.4025 [ inSPIRE].

  16. K.A. Intriligator and C. Vafa, Landau-Ginzburg orbifolds, Nucl. Phys. B 339 (1990) 95 [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. R.M. Kaufmann, Singularities with symmetries, orbifold Frobenius algebras and mirror symmetry, Contemp. Math. 403 (2006) 67 [math.AG/0312417].

    Article  MathSciNet  Google Scholar 

  18. M. Kreuzer and H. Skarke, On the classification of quasihomogeneous functions, Commun. Math. Phys. 150 (1992) 137 [hep-th/9202039] [ inSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. W.-m. Chen and Y.-b. Ruan, A new cohomology theory for orbifold, Commun. Math. Phys. 248 (2004) 1 [math.AG/0004129] [ inSPIRE].

  20. R. Schimmrigk, Critical superstring vacua from noncritical manifolds: a novel framework for string compactification, Phys. Rev. Lett. 70 (1993) 3688 [hep-th/9210062] [ inSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. R. Schimmrigk, Mirror symmetry and string vacua from a special class of Fano varieties, Int. J. Mod. Phys. A 11 (1996) 3049 [hep-th/9405086] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. P. Candelas, E. Derrick and L. Parkes, Generalized Calabi-Yau manifolds and the mirror of a rigid manifold, Nucl. Phys. B 407 (1993) 115 [hep-th/9304045] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Sethi, Supermanifolds, rigid manifolds and mirror symmetry, Nucl. Phys. B 430 (1994) 31 [hep-th/9404186] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. R.S. Garavuso, L. Katzarkov, M. Kreuzer and A. Noll, Super Landau-Ginzburg mirrors and algebraic cycles, JHEP 03 (2011) 017 [arXiv:1101.1368] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. R.S. Garavuso, M. Kreuzer and A. Noll, Fano hypersurfaces and Calabi-Yau supermanifolds, JHEP 03 (2009) 007 [arXiv:1101.1368] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. R.S. Garavuso, L. Katzarkov and A. Noll, Hodge theory and supermanifolds, in preparation.

  27. A.S. Schwarz, σ-models having supermanifolds as target spaces, Lett. Math. Phys. 38 (1996) 91 [hep-th/9506070] [ inSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. L.A. Borisov, Berglund-Hübsch mirror symmetry via vertex algebras, arXiv:1007.2633 [ inSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Garavuso.

Additional information

ArXiv ePrint: 1109.1686

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doran, C.F., Garavuso, R.S. Hori-Vafa mirror periods, Picard-Fuchs equations, and Berglund-Hübsch-Krawitz duality. J. High Energ. Phys. 2011, 128 (2011). https://doi.org/10.1007/JHEP10(2011)128

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)128

Keywords

Navigation