Skip to main content
Log in

New methods for characterizing phases of 2D supersymmetric gauge theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the physics of two-dimensional \( \mathcal{N} \) = (2, 2) gauged linear sigma models (GLSMs) via the two-sphere partition function. We show that the classical phase boundaries separating distinct GLSM phases, which are described by the secondary fan construction for abelian GLSMs, are completely encoded in the analytic structure of the partition function. The partition function of a non-abelian GLSM can be obtained as a limit from an abelian theory; we utilize this fact to show that the phases of non-abelian GLSMs can be obtained from the secondary fan of the associated abelian GLSM. We prove that the partition function of any abelian GLSM satisfies a set of linear differential equations; these reduce to the familiar A-hypergeometric system of Gel’fand, Kapranov, and Zelevinski for GLSMs describing complete intersections in toric varieties. We develop a set of conditions that are necessary for a GLSM phase to admit an interpretation as the low-energy limit of a non-linear sigma model with a Calabi-Yau threefold target space. Through the application of these criteria we discover a class of GLSMs with novel geometric phases corresponding to Calabi-Yau manifolds that are branched double-covers of Fano threefolds. These criteria provide a promising approach for constructing new Calabi-Yau geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. F. Benini and S. Cremonesi, Partition functions of N = (2, 2) gauge theories on S2 and vortices, arXiv:1206.2356 [INSPIRE].

  3. N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact results in D = 2 supersymmetric gauge theories, JHEP 05 (2013) 093 [arXiv:1206.2606] [INSPIRE].

    Article  ADS  Google Scholar 

  4. H. Jockers, V. Kumar, J.M. Lapan, D.R. Morrison and M. Romo, Two-sphere partition functions and Gromov-Witten invariants, arXiv:1208.6244 [INSPIRE].

  5. J. Gomis and S. Lee, Exact Kähler potential from gauge theory and mirror symmetry, JHEP 04 (2013) 019 [arXiv:1210.6022] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. Y. Honma and M. Manabe, Exact Kähler potential for Calabi-Yau fourfolds, JHEP 05 (2013) 102 [arXiv:1302.3760] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. D.S. Park and J. Song, The Seiberg-Witten Kähler potential as a two-sphere partition function, JHEP 01 (2013) 142 [arXiv:1211.0019] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. E. Sharpe, Predictions for Gromov-Witten invariants of noncommutative resolutions, arXiv:1212.5322 [INSPIRE].

  9. K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].

  10. I. Ciocan-Fontanine, B. Kim and C. Sabbah, The Abelian/Nonabelian correspondence and Frobenius manifolds, Inv. Math. 171 (2007) 301 [math/0610265].

    Article  MathSciNet  ADS  Google Scholar 

  11. K. Hori and D. Tong, Aspects of non-Abelian gauge dynamics in two-dimensional N = (2, 2) theories, JHEP 05 (2007) 079 [hep-th/0609032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. P.S. Aspinwall and B.R. Greene, On the geometric interpretation of N = 2 superconformal theories, Nucl. Phys. B 437 (1995) 205 [hep-th/9409110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Caldararu, J. Distler, S. Hellerman, T. Pantev and E. Sharpe, Non-birational twisted derived equivalences in abelian GLSMs, Commun. Math. Phys. 294 (2010) 605 [arXiv:0709.3855] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. S. Hellerman, A. Henriques, T. Pantev, E. Sharpe and M. Ando, Cluster decomposition, T -duality, and gerby CFTs, Adv. Theor. Math. Phys. 11 (2007) 751 [hep-th/0606034] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  15. B. de Wit and A. Van Proeyen, Potentials and symmetries of general gauged N = 2 supergravity: Yang-Mills models, Nucl. Phys. B 245 (1984) 89 [INSPIRE].

    Article  ADS  Google Scholar 

  16. V. Periwal and A. Strominger, Kähler geometry of the space of N = 2 superconformal field theories, Phys. Lett. B 235 (1990) 261 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Strominger, Special geometry, Commun. Math. Phys. 133 (1990) 163 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. P. Candelas and X. de la Ossa, Moduli Space of Calabi-Yau Manifolds, Nucl. Phys. B 355 (1991) 455 [INSPIRE].

    Article  ADS  Google Scholar 

  19. B. Craps, F. Roose, W. Troost and A. Van Proeyen, What is special Kähler geometry?, Nucl. Phys. B 503 (1997) 565 [hep-th/9703082] [INSPIRE].

    Article  ADS  Google Scholar 

  20. R.L. Bryant and P.A. Griffiths, Some observations on the infinitesimal period relations for regular threefolds with trivial canonical bundle, in Algebra, Arithmetic and geometry. Volume II, Y. Tschinkel and Y. Zarhin eds., Birkhäuser Boston, Boston U.S.A. (1983).

  21. D.S. Freed, Special Kähler manifolds, Commun. Math. Phys. 203 (1999) 31 [hep-th/9712042] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. A.C. Cadavid and S. Ferrara, Picard-Fuchs equations and the moduli space of superconformal field theories, Phys. Lett. B 267 (1991) 193 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. W. Lerche, D. Smit and N. Warner, Differential equations for periods and flat coordinates in two-dimensional topological matter theories, Nucl. Phys. B 372 (1992) 87 [hep-th/9108013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. D.R. Morrison, Picard-Fuchs equations and mirror maps for hypersurfaces, hep-th/9111025 [INSPIRE].

  25. P. Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics volume 163, Springer-Verlag, Berlin Germany (1970).

  26. V.V. Batyrev, Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori, Duke Math. J. 69 (1993) 349.

    Article  MathSciNet  MATH  Google Scholar 

  27. V.V. Batyrev and D. van Straten, Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric varieties, Commun. Math. Phys. 168 (1995) 493 [alg-geom/9307010] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  28. S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, Commun. Math. Phys. 167 (1995) 301 [hep-th/9308122] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. I. Gelfand, M. Kapranov, and A. Zelevinsky, Hypergeometric functions and toric varieties, Funktsional. Anal. 23 (1989) 12.

    Article  MathSciNet  Google Scholar 

  30. I. Gelfand, M. Kapranov and A. Zelevinsky, Generalized Euler integrals and A-hypergeometric functions, Adv. Math. 84 (1990) 255.

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Silverstein and E. Witten, Global U(1) R symmetry and conformal invariance of (0, 2) models, Phys. Lett. B 328 (1994) 307 [hep-th/9403054] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. I.M. Gelfand, A. V. Zelevinskiĭ and M.M. Kapranov, Newton polyhedra of principal A-determinants, Soviet Math. Dokl. 40 (1990) 278.

    Google Scholar 

  33. L.J. Billera, P. Filliman and B. Sturmfels, Constructions and complexity of secondary polytopes, Adv. Math. 83 (1990) 155.

    Article  MathSciNet  MATH  Google Scholar 

  34. P.S. Aspinwall, B.R. Greene and D.R. Morrison, Calabi-Yau moduli space, mirror manifolds and space-time topology change in string theory, Nucl. Phys. B 416 (1994) 414 [hep-th/9309097] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, New York U.S.A. (1978).

    MATH  Google Scholar 

  36. R.P. Horja, Hypergeometric functions and mirror symmetry in toric varieties, math/9912109.

  37. J. Stienstra, GKZ hypergeometric structures, math/0511351 [INSPIRE].

  38. R.N. Cahn, Semi-simple Lie algebras and their representations, Benjamin/cummings Menlo Park, California U.S.A. (1984).

  39. H. Jockers, V. Kumar, J.M. Lapan, D.R. Morrison and M. Romo, Nonabelian 2D gauge theories for determinantal Calabi-Yau varieties, JHEP 11 (2012) 166 [arXiv:1205.3192] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. W. Lerche, C. Vafa and N.P. Warner, Chiral rings in N = 2 superconformal theories, Nucl. Phys. B 324 (1989) 427 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. A. Sen, (2, 0) supersymmetry and space-time supersymmetry in the heterotic string theory, Nucl. Phys. B 278 (1986) 289 [INSPIRE].

    Article  ADS  Google Scholar 

  42. N. Seiberg, Observations on the moduli space of superconformal field theories, Nucl. Phys. B 303 (1988) 286 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. D.R. Morrison, Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians, J. Amer. Math. Soc. 6 (1993) 223 [alg-geom/9202004].

    Article  MathSciNet  MATH  Google Scholar 

  44. D.R. Morrison, Compactifications of moduli spaces inspired by mirror symmetry, Astérisque 281 (1993) 243 [alg-geom/9304007].

    Google Scholar 

  45. P. Candelas, X. De La Ossa, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter models. 1, Nucl. Phys. B 416 (1994) 481 [hep-th/9308083] [INSPIRE].

    Article  ADS  Google Scholar 

  46. P. Candelas, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter models. 2, Nucl. Phys. B 429 (1994) 626 [hep-th/9403187] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. P.S. Aspinwall and M.R. Plesser, Decompactifications and massless D-branes in hybrid models, JHEP 07 (2010) 078 [arXiv:0909.0252] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. D.R. Morrison and M.R. Plesser, Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys. B 440 (1995) 279 [hep-th/9412236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. P.S. Aspinwall, B.R. Greene and D.R. Morrison, Calabi-Yau moduli space, mirror manifolds and space-time topology change in string theory, Nucl. Phys. B 416 (1994) 414 [hep-th/9309097] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. D.A. Cox, The homogeneous coordinate ring of a toric variety, J. Alg. Geom. 4 (1995) 17.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Halverson.

Additional information

ArXiv ePrint: 1305.3278

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halverson, J., Kumar, V. & Morrison, D.R. New methods for characterizing phases of 2D supersymmetric gauge theories. J. High Energ. Phys. 2013, 143 (2013). https://doi.org/10.1007/JHEP09(2013)143

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)143

Keywords

Navigation