Skip to main content
Log in

Novel parity violating transport coefficients in 2 + 1 dimensions from holography

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct a 3+1 dimensional holographic model dual to a parity violating hydrodynamic system in 2+1 dimensions. Our model contains gravitational and electrodynamic Chern-Simons terms coupled to a neutral pseudo scalar θ, and a potential composed of quadratic and quartic terms in θ. The background is a charged black brane. We study the hydrodynamics to first order in spacetime derivatives near the probe limit of the pseudo scalar, by extracting the transport coefficients from the scalar, vector, and tensor modes of bulk perturbations. We study two mechanisms for breaking the parity of the boundary fluid: the parity is either spontaneously broken by the nonzero vev of the dual pseudo scalar operator, or by the pseudo scalar source on the boundary. We discover some novel temperature-dependent behaviors of the transport coefficients. It would be interesting to find these behaviors being realized in the real world materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Policastro, D. Son and A. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].

    Article  ADS  Google Scholar 

  2. P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M. Van Raamsdonk, Black hole dynamics from atmospheric science, JHEP 05 (2008) 106 [arXiv:0802.3224] [INSPIRE].

    Article  ADS  Google Scholar 

  5. S. Bhattacharyya et al., Forced fluid dynamics from gravity, JHEP 02 (2009) 018 [arXiv:0806.0006] [INSPIRE].

    Article  ADS  Google Scholar 

  6. S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma, Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions, JHEP 12 (2008) 116 [arXiv:0809.4272] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Haack and A. Yarom, Nonlinear viscous hydrodynamics in various dimensions using AdS/CFT, JHEP 10 (2008) 063 [arXiv:0806.4602] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. N. Banerjee et al., Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. J. Bhattacharya, S. Bhattacharyya and S. Minwalla, Dissipative superfluid dynamics from gravity, JHEP 04 (2011) 125 [arXiv:1101.3332] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A theory of first order dissipative superfluid dynamics, arXiv:1105.3733 [INSPIRE].

  12. C.P. Herzog, N. Lisker, P. Surowka and A. Yarom, Transport in holographic superfluids, JHEP 08 (2011) 052 [arXiv:1101.3330] [INSPIRE].

    Article  ADS  Google Scholar 

  13. D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. R. Loganayagam and P. Surowka, Anomaly/transport in an ideal Weyl gas, JHEP 04 (2012) 097 [arXiv:1201.2812] [INSPIRE].

    Article  ADS  Google Scholar 

  15. K. Jensen, Triangle anomalies, thermodynamics and hydrodynamics, Phys. Rev. D 85 (2012) 125017 [arXiv:1203.3599] [INSPIRE].

    ADS  Google Scholar 

  16. N. Banerjee et al., Constraints on fluid dynamics from equilibrium partition functions, arXiv:1203.3544 [INSPIRE].

  17. K. Jensen et al., Towards hydrodynamics without an entropy current, Phys. Rev. Lett. 109 (2012) 101601 [arXiv:1203.3556] [INSPIRE].

    Article  ADS  Google Scholar 

  18. O. Saremi and D.T. Son, Hall viscosity from gauge/gravity duality, JHEP 04 (2012) 091 [arXiv:1103.4851] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. J.-W. Chen, N.-E. Lee, D. Maity and W.-Y. Wen, A holographic model for Hall viscosity, Phys. Lett. B 713 (2012) 47 [arXiv:1110.0793] [INSPIRE].

    Article  ADS  Google Scholar 

  20. K. Jensen et al., Parity-violating hydrodynamics in 2 + 1 dimensions, JHEP 05 (2012) 102 [arXiv:1112.4498] [INSPIRE].

    Article  ADS  Google Scholar 

  21. T. Kimura and T. Nishioka, The chiral heat effect, Prog. Theor. Phys. 127 (2012), 1009–1017 [arXiv:1109.6331] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  22. T. Delsate, V. Cardoso and P. Pani, Anti de Sitter black holes and branes in dynamical Chern-Simons gravity: perturbations, stability and the hydrodynamic modes, JHEP 06 (2011) 055 [arXiv:1103.5756] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. STAR collaboration, B. Abelev et al., Azimuthal charged-particle correlations and possible local strong parity violation, Phys. Rev. Lett. 103 (2009) 251601 [arXiv:0909.1739] [INSPIRE].

    Article  ADS  Google Scholar 

  24. PHENIX collaboration, N.N. Ajitanand, S. Esumi and R.A. Lacey, Results from PHENIX, in the proceedings of the P- and CP-odd effects in hot and dense matter, April 26–30, Brookhaven National Laboratory, U.S.A. (2010).

  25. ALICE collaboration, P. Christakoglou, Charge dependent azimuthal correlations in Pb-Pb collisions at \( \sqrt {{{{s}_{{\mathrm{N} ~ \mathrm{N}}}}}} = { ~ 2}.{76} \) TeV, J. Phys. G 38 (2011) 124165 [arXiv:1106.2826] [INSPIRE].

    Article  ADS  Google Scholar 

  26. D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions:Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].

    Article  ADS  Google Scholar 

  27. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].

    ADS  Google Scholar 

  28. N.N. Ajitanand, R.A. Lacey, A. Taranenko and J. Alexander, A new method for the experimental study of topological effects in the quark-gluon plasma, Phys. Rev. C 83 (2011) 011901 [arXiv:1009.5624] [INSPIRE].

    ADS  Google Scholar 

  29. V.D. Orlovsky and V.I. Shevchenko, Towards a quantum theory of chiral magnetic effect, Phys. Rev. D 82 (2010) 094032 [arXiv:1008.4977] [INSPIRE].

    ADS  Google Scholar 

  30. D.E. Kharzeev and D.T. Son, Testing the chiral magnetic and chiral vortical effects in heavy ion collisions, Phys. Rev. Lett. 106 (2011) 062301 [arXiv:1010.0038] [INSPIRE].

    Article  ADS  Google Scholar 

  31. D.E. Kharzeev and H.J. Warringa, Chiral magnetic conductivity, Phys. Rev. D 80 (2009) 034028 [arXiv:0907.5007] [INSPIRE].

    ADS  Google Scholar 

  32. S. Ozonder, Maxwell-Chern-Simons hydrodynamics for the chiral magnetic effect, Phys. Rev. C 81 (2010) 062201 [Erratum ibid. C 84 (2011) 019903] [arXiv:1004.3883] [INSPIRE].

  33. B. Keren-Zur and Y. Oz, Hydrodynamics and the detection of the QCD axial anomaly in heavy ion collisions, JHEP 06 (2010) 006 [arXiv:1002.0804] [INSPIRE].

    Article  ADS  Google Scholar 

  34. D.E. Kharzeev and H.-U. Yee, Anomalies and time reversal invariance in relativistic hydrodynamics: the second order and higher dimensional formulations, Phys. Rev. D 84 (2011) 045025 [arXiv:1105.6360] [INSPIRE].

    ADS  Google Scholar 

  35. T. Kalaydzhyan and I. Kirsch, Fluid/gravity model for the chiral magnetic effect, Phys. Rev. Lett. 106 (2011) 211601 [arXiv:1102.4334] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J.-H. Gao, Z.-T. Liang, S. Pu, Q. Wang and X.-N. Wang, Chiral anomaly and local polarization effect from quantum kinetic approach, arXiv:1203.0725 [INSPIRE].

  37. N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald and N.P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82 (2010) 1539 [arXiv:0904.4154].

    Article  ADS  Google Scholar 

  38. Y. Zhang, N.P. Ong, P.W. Anderson, D.A. Bonn, R. Liang and W.N. Hardy, Giant enhancement of the thermal Hall conductivity κ xy in the superconductor YBa 2 Cu 3 O 7, Phys. Rev. Lett. 86 (2001) 890 [cond-mat/0008140].

    Article  ADS  Google Scholar 

  39. B. Zeini et al., Separation of quasiparticle and phononic heat currents in Y Ba 2 Cu 3 O 7−δ , Phys. Rev. Lett. 82 (1999) 2175.

    Article  ADS  Google Scholar 

  40. S.H. Simon and P.A. Lee, Scaling of the quasiparticle spectrum for d-wave superconductors, Phys. Rev. Lett. 78 (1997) 1548 [INSPIRE].

    Article  ADS  Google Scholar 

  41. H. Nieh, Quantum effects on four-dimensional space-time symmetries, Phys. Rev. Lett. 53 (1984) 2219 [INSPIRE].

    Article  ADS  Google Scholar 

  42. O. Vafek, A. Melikyan and Z. Tesanovic, Quasiparticle Hall transport of d-wave superconductors in the vortex state, Phys. Rev. B 64 (2001) 224508 [cond-mat/0104516].

    Article  ADS  Google Scholar 

  43. A.C. Durst and P.A. Lee, Impurity-induced quasiparticle transport and universal-limit Wiedemann-Franz violation in d-wave superconductors, Phys. Rev. B 62 (2000) 1270 [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Ryu, J.E. Moore and A.W. Ludwig, Electromagnetic and gravitational responses and anomalies in topological insulators and superconductors, Phys. Rev. B 85 (2012) 045104 [arXiv:1010.0936] [INSPIRE].

    Article  ADS  Google Scholar 

  45. S. Onoda, N. Sugimoto and N. Nagaosa, Quantum transport theory of anomalous electric, thermoelectric and thermal Hall effects in ferromagnets, Phys. Rev. B 77 (2008) 165103 [arXiv:0712.0210].

    Article  ADS  Google Scholar 

  46. J. Avron, R. Seiler and P. Zograf, Viscosity of quantum Hall fluids, Phys. Rev. Lett. 75 (1995) 697 [INSPIRE].

    Article  ADS  Google Scholar 

  47. J.E. Avron, Odd viscosity, physics/9712050.

  48. N. Read and E.H. Rezayi, Hall viscosity, orbital spin and geometry: Paired superfluids and quantum Hall systems, Phys. Rev. B 84 (2011), no. 8 085316 [arXiv:1008.0210].

  49. T.L. Hughes, R.G. Leigh and E. Fradkin, Torsional response and dissipationless viscosity in topological insulators, Phys. Rev. Lett. 107 (2011) 075502 [arXiv:1101.3541] [INSPIRE].

    Article  ADS  Google Scholar 

  50. N. Read, Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and p(x) + ip(y) paired superfluids, Phys. Rev. B 79 (2009) 045308 [arXiv:0805.2507] [INSPIRE].

    Article  ADS  Google Scholar 

  51. C. Hoyos and D.T. Son, Hall viscosity and electromagnetic response, Phys. Rev. Lett. 108 (2012) 066805 [arXiv:1109.2651] [INSPIRE].

    Article  ADS  Google Scholar 

  52. D. Grumiller, R.B. Mann and R. McNees, Dirichlet boundary value problem for Chern-Simons modified gravity, Phys. Rev. D 78 (2008) 081502 [arXiv:0803.1485] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. N. Iqbal, H. Liu, M. Mezei and Q. Si, Quantum phase transitions in holographic models of magnetism and superconductors, Phys. Rev. D 82 (2010) 045002 [arXiv:1003.0010] [INSPIRE].

    ADS  Google Scholar 

  54. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

    ADS  Google Scholar 

  55. P. Kovtun and A. Ritz, Universal conductivity and central charges, Phys. Rev. D 78 (2008) 066009 [arXiv:0806.0110] [INSPIRE].

    ADS  Google Scholar 

  56. T. Hertog, Towards a novel no-hair theorem for black holes, Phys. Rev. D 74 (2006) 084008 [gr-qc/0608075] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  57. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. A. Yarom, Notes on the bulk viscosity of holographic gauge theory plasmas, JHEP 04 (2010) 024 [arXiv:0912.2100] [INSPIRE].

    Article  ADS  Google Scholar 

  60. S. Jain, Universal thermal and electrical conductivity from holography, JHEP 11 (2010) 092 [arXiv:1008.2944] [INSPIRE].

    Article  ADS  Google Scholar 

  61. J. Hur, K.K. Kim and S.-J. Sin, Hydrodynamics with conserved current from the gravity dual, JHEP 03 (2009) 036 [arXiv:0809.4541] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. G.V. Dunne, Aspects of Chern-Simons theory, hep-th/9902115 [INSPIRE].

  63. R.G. Leigh, A.C. Petkou and P.M. Petropoulos, Holographic fluids with vorticity and analogue gravity, arXiv:1205.6140 [INSPIRE].

  64. A.J. Niemi and G.W. Semenoff, Axial anomaly induced fermion fractionization and effective gauge theory actions in odd dimensional space-times, Phys. Rev. Lett. 51 (1983) 2077 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. A.N. Redlich, Gauge noninvariance and parity violation of three-dimensional fermions, Phys. Rev. Lett. 52 (1984) 18 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. A. Redlich, Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions, Phys. Rev. D 29 (1984) 2366 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Huang Dai.

Additional information

ArXiv ePrint: 1206.0850

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, JW., Dai, SH., Lee, NE. et al. Novel parity violating transport coefficients in 2 + 1 dimensions from holography. J. High Energ. Phys. 2012, 96 (2012). https://doi.org/10.1007/JHEP09(2012)096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)096

Keywords

Navigation