Skip to main content
Log in

Chiral symmetry restoration in holographic noncommutative QCD

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the noncommutative deformation of the Sakai-Sugimoto model at finite temperature and finite baryon chemical potential. The space noncommutativity is possible to have an influence on the flavor dynamics of the QCD. The critical temperature and critical value of the chemical potential are modified by the space noncommutativity. The influence of the space noncommutativity on the flavor dynamics of the QCD is caused by the Wess-Zumino term in the effective action of the D8-branes. The intermediate temperature phase, in which the gluons deconfine but the chiral symmetry remains broken, is easy to be realized in some region of the noncommutativity parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory: compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  2. M.R. Douglas and C.M. Hull, D-branes and the noncommutative torus, JHEP 02 (1998) 008 [hep-th/9711165] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  3. F. Ardalan, H. Arfaei and M.M. Sheikh-Jabbari, Noncommutative geometry from strings and branes, JHEP 02 (1999) 016 [hep-th/9810072] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  4. M.M. Sheikh-Jabbari, Super Yang-Mills theory on noncommutative torus from open strings interactions, Phys. Lett. B 450 (1999) 119 [hep-th/9810179] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  5. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP 02 (2000) 020 [hep-th/9912072] [SPIRES].

    Article  ADS  Google Scholar 

  7. A. Hashimoto and N. Itzhaki, Non-commutative Yang-Mills and the AdS/CFT correspondence, Phys. Lett. B 465 (1999) 142 [hep-th/9907166] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  8. J.M. Maldacena and J.G. Russo, Large-N limit of non-commutative gauge theories, JHEP 09 (1999) 025 [hep-th/9908134] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Alishahiha, Y. Oz and M.M. Sheikh-Jabbari, Supergravity and large-N noncommutative field theories, JHEP 11 (1999) 007 [hep-th/9909215] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Dhar and Y. Kitazawa, Wilson loops in strongly coupled noncommutative gauge theories, Phys. Rev. D 63 (2001) 125005 [hep-th/0010256] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  11. S. Lee and S.-J. Sin, Wilson loop and dimensional reduction in noncommutative gauge theories, Phys. Rev. D 64 (2001) 086002 [hep-th/0104232] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  12. H. Takahashi, T. Nakajima and K. Suzuki, D1/D5 system and Wilson loops in (non-)commutative gauge theories, Phys. Lett. B 546 (2002) 273 [hep-th/0206081] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  13. T. Nakajima, K. Suzuki and H. Takahashi, Glueball mass spectra for supergravity duals of noncommutative gauge theories, JHEP 01 (2006) 016 [hep-th/0508054] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  14. D. Arean, A. Paredes and A.V. Ramallo, Adding flavor to the gravity dual of non-commutative gauge theories, JHEP 08 (2005) 017 [hep-th/0505181] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  15. J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in gauge/gravity duals — a review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [SPIRES].

    ADS  Google Scholar 

  16. D. Mateos, String theory and quantum chromodynamics, Class. Quant. Grav. 24 (2007) S713 [arXiv:0709.1523] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. K. Peeters and M. Zamaklar, The string/gauge theory correspondence in QCD, Eur. Phys. J. ST 152 (2007) 113 [arXiv:0708.1502] [SPIRES].

    Article  Google Scholar 

  18. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  19. T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  20. O. Aharony, J. Sonnenschein and S. Yankielowicz, A holographic model of deconfinement and chiral symmetry restoration, Annals Phys. 322 (2007) 1420 [hep-th/0604161] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. A. Parnachev and D.A. Sahakyan, Chiral phase transition from string theory, Phys. Rev. Lett. 97 (2006) 111601 [hep-th/0604173] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  22. K. Peeters, J. Sonnenschein and M. Zamaklar, Holographic melting and related properties of mesons in a quark gluon plasma, Phys. Rev. D 74 (2006) 106008 [hep-th/0606195] [SPIRES].

    ADS  Google Scholar 

  23. K.-Y. Kim, S.-J. Sin and I. Zahed, Dense hadronic matter in holographic QCD, hep-th/0608046 [SPIRES].

  24. N. Horigome and Y. Tanii, Holographic chiral phase transition with chemical potential, JHEP 01 (2007) 072 [hep-th/0608198] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Parnachev and D.A. Sahakyan, Photoemission with chemical potential from QCD gravity dual, Nucl. Phys. B 768 (2007) 177 [hep-th/0610247] [SPIRES].

    Article  ADS  Google Scholar 

  26. D. Yamada, Sakai-Sugimoto model at high density, JHEP 10 (2008) 020 [arXiv:0707.0101] [SPIRES].

    Article  ADS  Google Scholar 

  27. S.-l. Cui, Y.-h. Gao, Y. Seo, S.-j. Sin and W.-s. Xu, Note on a non-critical holographic model with a magnetic field, Phys. Rev. D 81 (2010) 066001 [arXiv:0910.2661] [SPIRES].

    ADS  Google Scholar 

  28. T. Matsuo, D. Tomino and W.-Y. Wen, Drag force in SYM plasma with B field from AdS/CFT, JHEP 10 (2006) 055 [hep-th/0607178] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  29. K.L. Panigrahi and S. Roy, Drag force in a hot non-relativistic, non-commutative Yang-Mills plasma, JHEP 04 (2010) 003 [arXiv:1001.2904] [SPIRES].

    Article  ADS  Google Scholar 

  30. J. Sadeghi and B. Pourhassan, Energy loss and jet quenching parameter in a thermal non-relativistic, non-commutative Yang-Mills plasma, arXiv:1002.1596 [SPIRES].

  31. O. Bergman, G. Lifschytz and M. Lippert, Response of holographic QCD to electric and magnetic fields, JHEP 05 (2008) 007 [arXiv:0802.3720] [SPIRES].

    Article  ADS  Google Scholar 

  32. C.V. Johnson and A. Kundu, External fields and chiral symmetry breaking in the Sakai-Sugimoto model, JHEP 12 (2008) 053 [arXiv:0803.0038] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  33. W.-H. Huang, Holographic gauge theory with Maxwell magnetic field, arXiv:0904.2328 [SPIRES].

  34. M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207 [hep-th/0109162] [SPIRES].

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadahito Nakajima.

Additional information

ArXiv ePrint: 1011.2906

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, T., Ohtake, Y. & Suzuki, K. Chiral symmetry restoration in holographic noncommutative QCD. J. High Energ. Phys. 2011, 54 (2011). https://doi.org/10.1007/JHEP09(2011)054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2011)054

Keywords

Navigation