Skip to main content
Log in

Holographic superfluids as duals of rotating black strings

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the breaking of an Abelian symmetry close to the horizon of an uncharged rotating Anti-de Sitter black string in 3+1 dimensions. The boundary theory living on \( \mathbb{R}^{2} \times S^{1} \) has no rotation, but a magnetic field that is aligned with the axis of the black string. This boundary theory describes non-rotating (2+1)-dimensional holographic superfluids with non-vanishing superfluid velocity. We study these superfluids in the grand canonical ensemble and show that for sufficiently small angular momentum of the dual black string and sufficiently small superfluid velocity the phase transition is 2nd order, while it becomes 1st order for larger superfluid velocity. Moreover, we observe that the phase transition is always 1st order above a critical value of the angular momentum independent of the choice of the superfluid velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, hep-th/0201253 [SPIRES].

  3. M.K. Benna and I.R. Klebanov, Gauge-string dualities and some applications, arXiv:0803.1315 [SPIRES].

  4. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  5. S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  6. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  7. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. G.T. Horowitz and M.M. Roberts, Holographic superconductors with various condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [SPIRES].

    ADS  MATH  Google Scholar 

  9. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  10. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722 [SPIRES].

  12. P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Ann. Phys. 144 (1982) 249 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. E. Nakano and W.-Y. Wen, Critical magnetic field in a holographic superconductor, Phys. Rev. D 78 (2008) 046004 [arXiv:0804.3180] [SPIRES].

    ADS  Google Scholar 

  14. T. Albash and C.V. Johnson, A Holographic Superconductor in an External Magnetic Field, JHEP 09 (2008) 121 [arXiv:0804.3466] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. T. Albash and C.V. Johnson, Phases of Holographic Superconductors in an External Magnetic Field, arXiv:0906.0519 [SPIRES].

  16. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [SPIRES].

    ADS  Google Scholar 

  17. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor superconductivity from gauge/gravity duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Montull, A. Pomarol and P.J. Silva, The holographic superconductor vortex, Phys. Rev. Lett. 103 (2009) 091601 [arXiv:0906.2396] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. X.-H. Ge, B. Wang, S.-F. Wu and G.-H. Yang, Analytical study on holographic superconductors in external magnetic field, arXiv:1002.4901 [SPIRES].

  20. C.P. Herzog, P.K. Kovtun and D.T. Son, Holographic model of superfluidity, Phys. Rev. D 79 (2009) 066002 [arXiv:0809.4870] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. P. Basu, A. Mukherjee and H.-H. Shieh, Supercurrent: vector hair for an AdS black hole, Phys. Rev. D 79 (2009) 045010 [arXiv:0809.4494] [SPIRES].

    ADS  Google Scholar 

  22. K. Maeda, M. Natsuume and T. Okamura, Vortex lattice for a holographic superconductor, Phys. Rev. D 81 (2010) 026002 [arXiv:0910.4475] [SPIRES].

    ADS  Google Scholar 

  23. K. Maeda, M. Natsuume and T. Okamura, On two pieces of folklore in the AdS/CFT duality, Phys. Rev. D 82 (2010) 046002 [arXiv:1005.2431] [SPIRES].

    ADS  Google Scholar 

  24. J. Sonner and B. Withers, A gravity derivation of the Tisza-Landau model in AdS/CFT, Phys. Rev. D 82 (2010) 026001 [arXiv:1004.2707] [SPIRES].

    ADS  Google Scholar 

  25. J. Sonner, A rotating holographic superconductor, Phys. Rev. D 80 (2009) 084031 [arXiv:0903.0627] [SPIRES].

    ADS  Google Scholar 

  26. J.P.S. Lemos, Two-dimensional black holes and planar general relativity, Class. Quant. Grav. 12 (1995) 1081 [gr-qc/9407024] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. J.P.S. Lemos, Cylindrical black hole in general relativity, Phys. Lett. B 353 (1995) 46 [gr-qc/9404041] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. J.P.S. Lemos and V.T. Zanchin, Rotating charged black string and three dimensional black holes, Phys. Rev. D 54 (1996) 3840 [hep-th/9511188] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional spacetimes, Phys. Rev. D 54 (1996) 4891 [gr-qc/9609065] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  30. M.H. Dehghani, Thermodynamics of rotating charged black strings and (A)dS/CFT correspondence, Phys. Rev. D 66 (2002) 044006 [hep-th/0205129] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. D. Arean, P. Basu and C. Krishnan, The many phases of holographic superfluids, arXiv:1006.5165 [SPIRES].

  32. M.H. Dehghani and N. Farhangkhah, Charged rotating dilaton black strings, Phys. Rev. D 71 (2005) 044008 [hep-th/0412049] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. M.H. Dehghani and A. Khodam-Mohammadi, Violation of no hair conjecture in Einstein-Maxwell-Higgs system, hep-th/0310126 [SPIRES].

  34. R. Ruffini and J. Wheeler, Introducing the black hole, Phys. Today 24 (1971) 30.

    Article  ADS  Google Scholar 

  35. D. Arean, P. Basu and C. Krishnan, The many phases of holographic superfluids, arXiv:1006.5165 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betti Hartmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brihaye, Y., Hartmann, B. Holographic superfluids as duals of rotating black strings. J. High Energ. Phys. 2010, 2 (2010). https://doi.org/10.1007/JHEP09(2010)002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)002

Keywords

Navigation