Skip to main content
Log in

Insights and possible resolution to the information loss paradox via the tunneling picture

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

This paper investigates the information loss paradox in the WKB/tunneling picture of Hawking radiation. In the tunneling picture one can obtain the tunneling amplitude to all orders in ℏ. However all terms beyond the lowest, semi-classical term involve unknown constants. Despite this we find that one can still arrive at interesting restrictions on Hawking radiation to all orders in ℏ: (i) Taking into account only quantum corrections the spectrum remains thermal to all orders. Thus quantum corrections by themselves will not resolve the information loss paradox. (ii) The quantum corrections do imply that the temperature of the radiation goes to zero as the mass of the black hole goes to zero. This is in contrast to the lowest order result where the radiation temperature diverges as the mass of the black hole goes to zero. (iii) Finally we show that by taking both quantum corrections and back reaction into account it is possible under specific conditions to solve the information paradox by having the black hole evaporate completely with the information carried away by the correlations of the outgoing radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.K. Parikh and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. 85 (2000) 5042 [hep-th/9907001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. K. Srinivasan and T. Padmanabhan, Particle production and complex path analysis, Phys. Rev. D 60 (1999) 024007 [gr-qc/9812028] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. S. Shankaranarayanan, T. Padmanabhan and K. Srinivasan, Hawking radiation in different coordinate settings: complex paths approach, Class. Quant. Grav. 19 (2002) 2671 [gr-qc/0010042] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. E.C. Vagenas, Complex paths and covariance of Hawking radiation in 2D stringy black holes, Nuovo Cim. B 117 (2002) 899 [hep-th/0111047] [SPIRES].

    ADS  Google Scholar 

  5. R. Banerjee and B.R. Majhi, Hawking black body spectrum from tunneling mechanism, Phys. Lett. B 675 (2009) 243 [arXiv:0903.0250] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. J.G. Russo, The information problem in black hole evaporation: old and recent results, hep-th/0501132 [SPIRES].

  7. J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. B.R. Holstein, Strong field pair production, Am. J. Phys. 67 (1999) 499.

    Article  ADS  Google Scholar 

  9. M. Arzano, A.J.M. Medved and E.C. Vagenas, Hawking radiation as tunneling through the quantum horizon, JHEP 09 (2005) 037 [hep-th/0505266] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. B. Zhang, Q.-y. Cai, L. You and M.-s. Zhan, Hidden messenger revealed in Hawking radiation: a resolution to the paradox of black hole information loss, arXiv:0903.0893 [SPIRES].

  11. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. R. Banerjee and B.R. Majhi, Quantum tunneling beyond semiclassical approximation, JHEP 06 (2008) 095 [arXiv:0805.2220] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. R. Banerjee and B.R. Majhi, Quantum tunneling, trace anomaly and effective metric, Phys. Lett. B 674 (2009) 218 [arXiv:0808.3688] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. B.R. Majhi, Fermion tunneling beyond semiclassical approximation, Phys. Rev. D 79 (2009) 044005 [arXiv:0809.1508] [SPIRES].

    ADS  Google Scholar 

  15. S.K. Modak, Corrected entropy of BTZ black hole in tunneling approach, Phys. Lett. B 671 (2009) 167 [arXiv:0807.0959] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. R. Banerjee and S.K. Modak, Exact differential and corrected area law for stationary black holes in tunneling method, JHEP 05 (2009) 063 [arXiv:0903.3321] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. T. Zhu and J.-R. Ren, Corrections to Hawking-like radiation for a Friedmann-Robertson-Walker universe, Eur. Phys. J. C 62 (2009) 413 [arXiv:0811.4074] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. T. Zhu, J.-R. Ren and M.-F. Li, Corrected entropy of Friedmann-Robertson-Walker Universe in Tunneling Method, JCAP 08 (2009) 010 [arXiv:0905.1838] [SPIRES].

    ADS  Google Scholar 

  19. T. Zhu, J.-R. Ren and M.-F. Li, Corrected entropy of high dimensional black holes, arXiv:0906.4194 [SPIRES].

  20. R. Banerjee and S.K. Modak, Quantum tunneling, blackbody spectrum and non-logarithmic entropy correction for Lovelock black holes, JHEP 11 (2009) 073 [arXiv:0908.2346] [SPIRES].

    Article  ADS  Google Scholar 

  21. B.D. Chowdhury, Problems with tunneling of thin shells from black holes, Pramana 70 (2008) 593 [hep-th/0605197] [SPIRES].

    Article  Google Scholar 

  22. E.T. Akhmedov, V. Akhmedova and D. Singleton, Hawking temperature in the tunneling picture, Phys. Lett. B 642 (2006) 124 [hep-th/0608098] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. E.T. Akhmedov, V. Akhmedova, T. Pilling and D. Singleton, Thermal radiation of various gravitational backgrounds, Int. J. Mod. Phys. A 22 (2007) 1705 [hep-th/0605137] [SPIRES].

    ADS  Google Scholar 

  24. V. Akhmedova, T. Pilling, A. de Gill and D. Singleton, Comments on anomaly versus WKB/tunneling methods for calculating Unruh radiation, Phys. Lett. B 673 (2009) 227 [arXiv:0808.3413] [SPIRES].

    ADS  Google Scholar 

  25. T. Pilling, Quasi-classical Hawking temperatures and black hole thermodynamics, arXiv:0809.2701 [SPIRES].

  26. E.T. Akhmedov, T. Pilling and D. Singleton, Subtleties in the quasi-classical calculation of Hawking radiation, Int. J. Mod. Phys. D 17 (2008) 2453 [arXiv:0805.2653] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. V. Akhmedova, T. Pilling, A. de Gill and D. Singleton, Temporal contribution to gravitational WKB-like calculations, Phys. Lett. B 666 (2008) 269 [arXiv:0804.2289] [SPIRES].

    ADS  Google Scholar 

  28. T. Zhu, J.-R. Ren and D. Singleton, Hawking-like radiation as tunneling from the apparent horizon in a FRW Universe, Int. J. Mod. Phys. D 19 (2010) 159 [arXiv:0902.2542] [SPIRES].

    ADS  Google Scholar 

  29. B. Zhang, Q.-y. Cai, M.-s. Zhan and L. You, No information is lost: a revisit of Hawking radiation as tunneling, arXiv:0906.5033 [SPIRES].

  30. Y.-X. Chen and K.-N. Shao, Information loss and entropy conservation in quantum corrected Hawking radiation, Phys. Lett. B 678 (2009) 131 [arXiv:0905.0948] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. M.A. Nielsen and L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge U.K. (2000).

    MATH  Google Scholar 

  32. X. Li, A note on the black hole remnant, Phys. Lett. B 647 (2007) 207 [SPIRES].

    ADS  Google Scholar 

  33. B. Zwiebach, A first course in string theory, Cambridge University Press, Cambridge U.K. (2004), pag. 221.

    MATH  Google Scholar 

  34. K.A. Meissner, Black hole entropy in loop quantum gravity, Class. Quant. Grav. 21 (2004) 5245 [gr-qc/0407052] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. B. Harms and Y. Leblanc, Statistical mechanics of black holes, Phys. Rev. D 46 (1992) 2334 [hep-th/9205021] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. R. Casadio, B. Harms and Y. Leblanc, Microfield dynamics of black holes, Phys. Rev. D 58 (1998) 044014 [gr-qc/9712017] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  37. R. Casadio and B. Harms, Charged dilatonic black holes: string frame vs. Einstein frame, Mod. Phys. Lett. A 14 (1999) 1089 [gr-qc/9806032] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. P. Nicolini, Noncommutative black holes, the final appeal to quantum gravity: a review, Int. J. Mod. Phys. A 24 (2009) 1229 [arXiv:0807.1939] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. R. Casadio and P. Nicolini, The decay-time of non-commutative micro-black holes, JHEP 11 (2008) 072 [arXiv:0809.2471] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. E. Spallucci, A. Smailagic and P. Nicolini, Pair creation by higher dimensional, regular, charged, micro black holes, Phys. Lett. B 670 (2009) 449 [arXiv:0801.3519] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  41. P. Nicolini, A. Smailagic and E. Spallucci, Noncommutative geometry inspired Schwarzschild black hole, Phys. Lett. B 632 (2006) 547 [gr-qc/0510112] [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Singleton.

Additional information

ArXiv ePrint: 1005.3778

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singleton, D., Vagenas, E.C., Zhu, T. et al. Insights and possible resolution to the information loss paradox via the tunneling picture. J. High Energ. Phys. 2010, 89 (2010). https://doi.org/10.1007/JHEP08(2010)089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2010)089

Keywords

Navigation