Skip to main content
Log in

One-point functions in finite volume/temperature: a case study

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider finite volume (or equivalently, finite temperature) expectation values of local operators in integrable quantum field theories using a combination of numerical and analytical approaches. It is shown that the truncated conformal space approach, when supplemented with a recently proposed renormalization group, can be sufficiently extended to the low-energy regime that it can be matched with high precision by the low-temperature expansion proposed by Leclair and Mussardo. Besides verifying the consistency of the two descriptions, their combination leads to an evaluation of expectation values which is valid to a very high precision for all volume/temperature scales. As a side result of the investigation, we also discuss some unexpected singularities in the framework recently proposed by Pozsgay and Takács for the description of matrix elements of local operators in finite volume, and show that while some of these singularities are resolved by the inclusion of the class of exponential finite size corrections known as μ-terms, these latter corrections themselves lead to the appearance of new singularities. We point out that a fully consistent description of finite volume matrix elements is expected to be free of singularities, and therefore a more complete and systematic understanding of exponential finite size corrections is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Leclair and G. Mussardo, Finite temperature correlation functions in integrable QFT, Nucl. Phys. B 552 (1999) 624 [hep-th/9902075] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. C.-N. Yang and C. Yang, Thermodynamics of one-dimensional system of bosons with repulsive delta function interaction, J. Math. Phys. 10 (1969) 1115 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  3. A. Zamolodchikov, Thermodynamic Bethe ansatz in relativistic models. Scaling three state Potts and Lee-Yang models, Nucl. Phys. B 342 (1990) 695 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Karowski and P. Weisz, Exact form-factors in (1 + 1)-dimensional field theoretic models with soliton behavior, Nucl. Phys. B 139 (1978) 455 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Kirillov and F. Smirnov, A representation of the current algebra connected with the SU(2) invariant Thirring model, Phys. Lett. B 198 (1987) 506 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. F.A. Smirnov, Form-factors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys. 14 (1992) 1.

    Article  Google Scholar 

  7. H. Saleur, A comment on finite temperature correlations in integrable QFT, Nucl. Phys. B 567 (2000) 602 [hep-th/9909019] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. B. Pozsgay and G. Takács, Form-factors in finite volume I: form-factor bootstrap and truncated conformal space, Nucl. Phys. B 788 (2008) 167 [arXiv:0706.1445] [INSPIRE].

    Article  ADS  Google Scholar 

  9. B. Pozsgay and G. Takács, Form factors in finite volume. II. Disconnected terms and finite temperature correlators, Nucl. Phys. B 788 (2008) 209 [arXiv:0706.3605] [INSPIRE].

    Article  ADS  Google Scholar 

  10. B. Pozsgay, Mean values of local operators in highly excited Bethe states, J. Stat. Mech. 01 (2011) P01011 [arXiv:1009.4662] [INSPIRE].

    MathSciNet  Google Scholar 

  11. M. Kormos, A. Trombettoni and G. Mussardo, Expectation values in the Lieb-Liniger Bose gas, Phys. Rev. Lett. 103 (2009) 210404 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Kormos, G. Mussardo and A. Trombettoni, Local correlations in the super Tonks-Girardeau gas, Phys. Rev. A 83 (2011) 013617 [arXiv:1008.4383] [INSPIRE].

    Article  ADS  Google Scholar 

  13. B. Pozsgay, Local correlations in the 1D Bose gas from a scaling limit of the XXZ chain, J. Stat. Mech. 11 (2011) P11017 [arXiv:1108.6224] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  14. F.H.L. Essler and R.M. Konik, Finite-temperature dynamical correlations in massive integrable quantum field theories, J. Stat. Mech. 09 (2009) P0918 [arXiv:0907.0779].

    Google Scholar 

  15. F.H. Essler and R.M. Konik, Finite-temperature lineshapes in gapped quantum spin chains, Phys. Rev. B 78 (2008) 100403 [arXiv:0711.2524] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  16. B. Pozsgay and G. Takács, Form factor expansion for thermal correlators, J. Stat. Mech. 11 (2010) P11012 [arXiv:1008.3810] [INSPIRE].

    Article  Google Scholar 

  17. I. Szecsenyi and G. Takács, Spectral expansion for finite temperature two-point functions and clustering, J. Stat. Mech. 12 (2012) P12002 [arXiv:1210.0331] [INSPIRE].

    Article  Google Scholar 

  18. V. Yurov and A. Zamolodchikov, Truncated conformal space approach to scaling Lee-Yang model, Int. J. Mod. Phys. A 5 (1990) 3221 [INSPIRE].

    Article  ADS  Google Scholar 

  19. G. Feverati, K. Graham, P.A. Pearce, G.Z. Toth and G. Watts, A renormalisation group for TCSA, J. Stat. Mech. 08 (2008) P03011 [hep-th/0612203] [INSPIRE].

    MathSciNet  Google Scholar 

  20. R.M. Konik and Y. Adamov, A numerical renormalization group for continuum one-dimensional systems, Phys. Rev. Lett. 98 (2007) 147205 [cond-mat/0701605] [INSPIRE].

    Article  ADS  Google Scholar 

  21. P. Giokas and G. Watts, The renormalisation group for the truncated conformal space approach on the cylinder, arXiv:1106.2448 [INSPIRE].

  22. B. Pozsgay, Lüschers μ-term and finite volume bootstrap principle for scattering states and form factors, Nucl. Phys. B 802 (2008) 435 [arXiv:0803.4445] [INSPIRE].

    Article  ADS  Google Scholar 

  23. T. Palmai and G. Takács, Diagonal multisoliton matrix elements in finite volume, Phys. Rev. D 87 (2013), no. 4 045010 [arXiv:1209.6034] [INSPIRE].

  24. V. Dotsenko and V. Fateev, Conformal algebra and multipoint correlation functions in two-dimensional statistical models, Nucl. Phys. B 240 (1984) 312 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. V. Dotsenko and V. Fateev, Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with the central charge c < 1, Nucl. Phys. B 251 (1985) 691 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. V. Dotsenko and V. Fateev, Operator algebra of two-dimensional conformal theories with central charge c ≤ 1, Phys. Lett. B 154 (1985) 291 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Zamolodchikov, Integrals of motion and S matrix of the (scaled) T = T c Ising model with magnetic field, Int. J. Mod. Phys. A 4 (1989) 4235 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. G. Feverati, F. Ravanini and G. Takács, Truncated conformal space at c = 1, nonlinear integral equation and quantization rules for multi-soliton states, Phys. Lett. B 430 (1998) 264 [hep-th/9803104] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J.L. Cardy and G. Mussardo, S matrix of the Yang-Lee edge singularity in two-dimensions, Phys. Lett. B 225 (1989) 275 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. V. Fateev, S.L. Lukyanov, A.B. Zamolodchikov and A.B. Zamolodchikov, Expectation values of local fields in Bullough-Dodd model and integrable perturbed conformal field theories, Nucl. Phys. B 516 (1998) 652 [hep-th/9709034] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. P. Dorey, M. Pillin, R. Tateo and G. Watts, One point functions in perturbed boundary conformal field theories, Nucl. Phys. B 594 (2001) 625 [hep-th/0007077] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. H. Kausch, G. Takács and G. Watts, On the relation between Φ(1,2) and Φ(1,5) perturbed minimal models, Nucl. Phys. B 489 (1997) 557 [hep-th/9605104] [INSPIRE].

    Article  ADS  Google Scholar 

  33. G. Feher and G. Takács, Sine-Gordon form factors in finite volume, Nucl. Phys. B 852 (2011) 441 [arXiv:1106.1901] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G. Takács, Determining matrix elements and resonance widths from finite volume: the dangerous μ-terms, JHEP 11 (2011) 113 [arXiv:1110.2181] [INSPIRE].

    Article  ADS  Google Scholar 

  35. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable quantum field theories in finite volume: excited state energies, Nucl. Phys. B 489 (1997) 487 [hep-th/9607099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. P. Dorey and R. Tateo, Excited states by analytic continuation of TBA equations, Nucl. Phys. B 482 (1996) 639 [hep-th/9607167] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. P. Dorey and R. Tateo, Excited states in some simple perturbed conformal field theories, Nucl. Phys. B 515 (1998) 575 [hep-th/9706140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. Z. Bajnok and R.A. Janik, Four-loop perturbative Konishi from strings and finite size effects for multiparticle states, Nucl. Phys. B 807 (2009) 625 [arXiv:0807.0399] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. B. Pozsgay, Form factor approach to diagonal finite volume matrix elements in integrable QFT, JHEP 07 (2013) 157 [arXiv:1305.3373] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Belavin, A.M. Polyakov and A. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. V. Fateev, The exact relations between the coupling constants and the masses of particles for the integrable perturbed conformal field theories, Phys. Lett. B 324 (1994) 45 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Koubek, Form-factor bootstrap and the operator content of perturbed minimal models, Nucl. Phys. B 428 (1994) 655 [hep-th/9405014] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. N. Reshetikhin and F. Smirnov, Hidden quantum group symmetry and integrable perturbations of conformal field theories, Commun. Math. Phys. 131 (1990) 157 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. S.L. Lukyanov and A.B. Zamolodchikov, Exact expectation values of local fields in quantum sine-Gordon model, Nucl. Phys. B 493 (1997) 571 [hep-th/9611238] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. G. Takács, Form factor perturbation theory from finite volume, Nucl. Phys. B 825 (2010) 466 [arXiv:0907.2109] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Takács.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szécsényi, I., Takács, G. & Watts, G. One-point functions in finite volume/temperature: a case study. J. High Energ. Phys. 2013, 94 (2013). https://doi.org/10.1007/JHEP08(2013)094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)094

Keywords

Navigation