Skip to main content
Log in

Strong gravitational lensing of quasi-Kerr compact object with arbitrary quadrupole moments

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the strong gravitational lensing on the equatorial plane of a quasi-Kerr compact object with arbitrary quadrupole moments which can be used to model the super-massive central object of the galaxy. We find that, when the quadrupolar correction parameter ξ takes the positive (negative) value, the photon-sphere radius r ps, the minimum impact parameter u ps, the coefficient \( \overline b \), the relative magnitudes r m and the angular position of the relativistic images θ are larger (smaller) than the results obtained in the Kerr black hole, but the coefficient \( \overline a \), the deflection angle α(θ) and the angular separation s are smaller (larger) than that in the Kerr black hole. These features may offer a way to probe special properties for some rotating compact objects by the astronomical instruments in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Israel, Event horizons in static vacuum space-times, Phys. Rev. 164 (1967) 1776 [INSPIRE].

    Article  ADS  Google Scholar 

  2. W. Israel, Event horizons in static electrovac space-times, Commun. Math. Phys. 8 (1968) 245.

    Article  MathSciNet  ADS  Google Scholar 

  3. B. Carter, Axisymmetric black hole has only two degrees of freedom, Phys. Rev. Lett. 26 (1971) 331 [INSPIRE].

    Article  ADS  Google Scholar 

  4. S. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972) 152 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. D. Robinson, Uniqueness of the Kerr black hole, Phys. Rev. Lett. 34 (1975) 905 [INSPIRE].

    Article  ADS  Google Scholar 

  6. F. Caravelli and L. Modesto, Spinning loop black holes, Class. Quant. Grav. 27 (2010) 245022 [arXiv:1006.0232] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. T. Johannsen and D. Psaltis, A metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem, Phys. Rev. D 83 (2011) 124015 [arXiv:1105.3191] [INSPIRE].

    ADS  Google Scholar 

  8. C. Bambi and L. Modesto, Can an astrophysical black hole have a topologically non-trivial event horizon?, Phys. Lett. B 706 (2011) 13 [arXiv:1107.4337] [INSPIRE].

    Article  ADS  Google Scholar 

  9. D. Psaltis, D. Perrodin, K.R. Dienes and I. Mocioiu, Kerr black holes are not unique to general relativity, Phys. Rev. Lett. 100 (2008) 091101 [arXiv:0710.4564] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. F. Ryan, Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments, Phys. Rev. D 52 (1995) 5707 [INSPIRE].

    ADS  Google Scholar 

  11. L. Barack and C. Cutler, LISA capture sources: approximate waveforms, signal-to-noise ratios and parameter estimation accuracy, Phys. Rev. D 69 (2004) 082005 [gr-qc/0310125] [INSPIRE].

    ADS  Google Scholar 

  12. J. Brink, Spacetime encodings IA spacetime reconstruction problem, Phys. Rev. D 78 (2008) 102001 [arXiv:0807.1178] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. C. Li and G. Lovelace, A Generalization of Ryans theorem: probing tidal coupling with gravitational waves from nearly circular, nearly equatorial, extreme-mass-ratio inspirals, Phys. Rev. D 77 (2008) 064022 [gr-qc/0702146] [INSPIRE].

    ADS  Google Scholar 

  14. T.A. Apostolatos, G. Lukes-Gerakopoulos and G. Contopoulos, How to observe a non-kerr spacetime using gravitational waves, Phys. Rev. Lett. 103 (2009) 111101 [arXiv:0906.0093] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. N.A. Collins and S.A. Hughes, Towards a formalism for mapping the space-times of massive compact objects: bumpy black holes and their orbits, Phys. Rev. D 69 (2004) 124022 [gr-qc/0402063] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. S.J. Vigeland and S.A. Hughes, Spacetime and orbits of bumpy black holes, Phys. Rev. D 81 (2010) 024030 [arXiv:0911.1756] [INSPIRE].

    ADS  Google Scholar 

  17. J.R. Gair, C. Li and I. Mandel, Observable properties of orbits in exact bumpy spacetimes, Phys. Rev. D 77 (2008) 024035 [arXiv:0708.0628] [INSPIRE].

    ADS  Google Scholar 

  18. T. Johannsen and D. Psaltis, Testing the no-hair theorem with observations of black holes in the electromagnetic spectrum, Adv. Space Res. 47 (2011) 528.

    Article  ADS  Google Scholar 

  19. C. Bambi and E. Barausse, Constraining the quadrupole moment of stellar-mass black-hole candidates with the continuum fitting method, Astrophys. J. 731 (2011) 121 [arXiv:1012.2007] [INSPIRE].

    Article  ADS  Google Scholar 

  20. R.P. Geroch, Multipole moments. II. Curved space, J. Math. Phys. 11 (1970) 2580 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. R. Hansen, Multipole moments of stationary space-times, J. Math. Phys. 15 (1974) 46 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  22. G. Fodor, C. Hoenselaers and Z. Perjés, Multipole moments of axisymmetric systems in relativity, J. Math. Phys. 30 (1989) 2252.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. S. Vigeland, N. Yunes and L. Stein, Bumpy black holes in alternate theories of gravity, Phys. Rev. D 83 (2011) 104027 [arXiv:1102.3706] [INSPIRE].

    ADS  Google Scholar 

  24. V.S. Manko and I.D. Novikov, Generalizations of the Kerr and Kerr-Newman metrics possessing an arbitrary set of mass-multipole moments, Class. Quantum Grav. 9 (1992) 2477.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. K. Glampedakis and S. Babak, Mapping spacetimes with LISA: inspiral of a test-body in aquasi-Kerrfield, Class. Quant. Grav. 23 (2006) 4167 [gr-qc/0510057] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. T. Johannsen and D. Psaltis, Testing the no-hair theorem with observations in the electromagnetic spectrum: I. Properties of a quasi-Kerr spacetime, Astrophys. J. 716 (2010) 187 [arXiv:1003.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  27. T. Johannsen and D. Psaltis, Testing the no-hair theorem with observations in the electromagnetic spectrum: II. Black-hole images, Astrophys. J. 718 (2010) 446 [arXiv:1005.1931] [INSPIRE].

    Article  ADS  Google Scholar 

  28. T. Johannsen and D. Psaltis, Testing the no-hair theorem with observations in the electromagnetic spectrum. III. Quasi-periodic variability, Astrophys. J. 726 (2011) 11 [arXiv:1010.1000] [INSPIRE].

    Article  ADS  Google Scholar 

  29. K. Virbhadra, D. Narasimha and S. Chitre, Role of the scalar field in gravitational lensing, Astron. Astrophys. 337 (1998) 1 [astro-ph/9801174] [INSPIRE].

    ADS  Google Scholar 

  30. K. Virbhadra and G.F. Ellis, Schwarzschild black hole lensing, Phys. Rev. D 62 (2000) 084003 [astro-ph/9904193] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. C.-M. Claudel, K. Virbhadra and G. Ellis, The geometry of photon surfaces, J. Math. Phys. 42 (2001) 818 [gr-qc/0005050] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. K.S. Virbhadra and G.F.R. Ellis, Gravitational lensing by naked singularities, Phys. Rev. D 65 (2002) 103004 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. V. Bozza, Gravitational lensing in the strong field limit, Phys. Rev. D 66 (2002) 103001 [gr-qc/0208075] [INSPIRE].

    ADS  Google Scholar 

  34. V. Bozza, Quasiequatorial gravitational lensing by spinning black holes in the strong field limit, Phys. Rev. D 67 (2003) 103006 [gr-qc/0210109] [INSPIRE].

    ADS  Google Scholar 

  35. V. Bozza, F. De Luca, G. Scarpetta and M. Sereno, Analytic kerr black hole lensing for equatorial observers in the strong deflection limit, Phys. Rev. D 72 (2005) 083003 [gr-qc/0507137] [INSPIRE].

    ADS  Google Scholar 

  36. V. Bozza, F. De Luca and G. Scarpetta, Kerr black hole lensing for generic observers in the strong deflection limit, Phys. Rev. D 74 (2006) 063001 [gr-qc/0604093] [INSPIRE].

    ADS  Google Scholar 

  37. G.N. Gyulchev and S.S. Yazadjiev, Kerr-Sen dilaton-axion black hole lensing in the strong deflection limit, Phys. Rev. D 75 (2007) 023006 [gr-qc/0611110] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. G.N. Gyulchev and S.S. Yazadjiev, Gravitational lensing by rotating naked singularities, Phys. Rev. D 78 (2008) 083004 [arXiv:0806.3289] [INSPIRE].

    ADS  Google Scholar 

  39. S. Frittelli, T.P. Kling and E.T. Newman, Space-time perspective of Schwarzschild lensing, Phys. Rev. D 61 (2000) 064021 [gr-qc/0001037] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. V. Bozza, S. Capozziello, G. Iovane and G. Scarpetta, Strong field limit of black hole gravitational lensing, Gen. Rel. Grav. 33 (2001) 1535 [gr-qc/0102068] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  41. E.F. Eiroa, G.E. Romero and D.F. Torres, Reissner-Nordstrom black hole lensing, Phys. Rev. D 66 (2002) 024010 [gr-qc/0203049] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. E.F. Eiroa, A braneworld black hole gravitational lens: strong field limit analysis, Phys. Rev. D 71 (2005) 083010 [gr-qc/0410128] [INSPIRE].

    ADS  Google Scholar 

  43. E.F. Eiroa, Gravitational lensing by Einstein-Born-Infeld black holes, Phys. Rev. D 73 (2006) 043002 [gr-qc/0511065] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  44. R. Whisker, Strong gravitational lensing by braneworld black holes, Phys. Rev. D 71 (2005) 064004 [astro-ph/0411786] [INSPIRE].

    ADS  Google Scholar 

  45. A. Bhadra, Gravitational lensing by a charged black hole of string theory, Phys. Rev. D 67 (2003) 103009 [gr-qc/0306016] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  46. S.-b. Chen and J.-l. Jing, Strong field gravitational lensing in the deformed Hořava-Lifshitz black hole, Phys. Rev. D 80 (2009) 024036 [arXiv:0905.2055] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  47. Y. Liu, S. Chen and J. Jing, Strong gravitational lensing in a squashed Kaluza-Klein black hole spacetime, Phys. Rev. D 81 (2010) 124017 [arXiv:1003.1429] [INSPIRE].

    ADS  Google Scholar 

  48. S. Chen, Y. Liu and J. Jing, Strong gravitational lensing in a squashed Kaluza-Klein Godel black hole, Phys. Rev. D 83 (2011) 124019 [arXiv:1102.0086] [INSPIRE].

    ADS  Google Scholar 

  49. T. Ghosh and S. Sengupta, Strong gravitational lensing across dilaton Anti-de Sitter black hole, Phys. Rev. D 81 (2010) 044013 [arXiv:1001.5129] [INSPIRE].

    ADS  Google Scholar 

  50. A.N. Aliev and P. Talazan, Gravitational effects of rotating braneworld black holes, Phys. Rev. D 80 (2009) 044023 [arXiv:0906.1465] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. S.-W. Wei and Y.-X. Liu, Equatorial and quasi-equatorial gravitational lensing by Kerr black hole pierced by a cosmic string, Phys. Rev. D 85 (2012) 064044 [arXiv:1107.3023] [INSPIRE].

    ADS  Google Scholar 

  52. C. Darwin, The gravity field of a particle, Proc. Roy. Soc. London 249 (1959) 180.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. J.B. Hartle, Slowly rotating relativistic stars. I. Equations of structure, Astroph. J. 150 (1967) 1005.

    Article  ADS  Google Scholar 

  54. J.B. Hartle and K.S. Thorne, Slowly rotating relativistic stars. II. Models for neutron stars and supermassive stars, Astroph. J. 153 (1968) 807.

    Article  ADS  Google Scholar 

  55. A. Einstein, Lens-like action of a star by the deviation of light in the gravitational field, Science 84 (1936) 506 [INSPIRE].

    Article  ADS  Google Scholar 

  56. R. Genzel, F. Eisenhauer and S. Gillessen, The galactic center massive black hole and nuclear star cluster, Rev. Mod. Phys. 82 (2010) 3121 [arXiv:1006.0064] [INSPIRE].

    Article  ADS  Google Scholar 

  57. V. Bozza and L. Mancini, Observing gravitational lensing effects by Sgr A * with GRAVITY, Astrophys. J. 753 (2012) 56 [arXiv:1204.2103] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiliang Jing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Chen, S. & Jing, J. Strong gravitational lensing of quasi-Kerr compact object with arbitrary quadrupole moments. J. High Energ. Phys. 2012, 97 (2012). https://doi.org/10.1007/JHEP08(2012)097

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)097

Keywords

Navigation