Skip to main content
Log in

On holographic description of the Kerr-Newman-AdS-dS black holes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the holographic description of the generic four-dimensional non-extremal Kerr-Newman-AdS-dS black holes. We find that if focusing on the near-horizon region, for the massless scalar scattering in the low-frequency limit, there exists hidden conformal symmetry on the solution space. Similar to the Kerr case, this suggests that the Kerr-Newman-AdS-dS black hole is dual to a two-dimensional CFT with central charges \( {c_L} = {c_R} = \frac{{6a\left( {{r_{+} } + {r_*}} \right)}}{k} \) and temperatures \( {T_L} = \frac{{k\left( {r_{+}^2 + r_*^2 + 2{a^2}} \right)}}{{4\pi a \Xi \left( {{r_{+} } + {r_*}} \right)}} \), \( {T_R} = \frac{{k\left( {{r_{+} } - {r_*}} \right)}}{{4\pi a\Xi }} \). The macroscopic Bekenstein-Hawking entropy could be recovered from the microscopic counting in dual CFT via the Cardy formula. Using the Minkowski prescription, we compute the real-time correlators of the scalar, photon and graviton in near horizon geometry of near extremal Kerr-AdS-dS black hole. In all these cases, the retarded Green’s functions and the corresponding absorption cross sections are in perfect match with CFT prediction. We further discuss the low-frequency scattering of a charged scalar by a Kerr-Newman-AdS-dS black hole and find the dual CFT description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. Y. Matsuo, T. Tsukioka and C.-M. Yoo, Another realization of Kerr/CFT correspondence, Nucl. Phys. B 825 (2010) 231 [arXiv:0907.0303] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. Y. Matsuo, T. Tsukioka and C.-M. Yoo, Yet another realization of Kerr/CFT correspondence, Europhys. Lett. 89 (2010) 60001 [arXiv:0907.4272] [SPIRES].

    Article  ADS  Google Scholar 

  5. A. Castro and F. Larsen, Near extremal Kerr entropy from AdS 2 quantum gravity, JHEP 12 (2009) 037 [arXiv:0908.1121] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. H. Lü, J. Mei and C.N. Pope, Kerr/CFT correspondence in diverse dimensions, JHEP 04 (2009) 054 [arXiv:0811.2225] [SPIRES].

    Article  Google Scholar 

  7. T. Azeyanagi, N. Ogawa and S. Terashima, Holographic duals of Kaluza-Klein black holes, JHEP 04 (2009) 061 [arXiv:0811.4177] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. D.D.K. Chow, M. Cvetič, H. Lü and C.N. Pope, Extremal black hole/CFT correspondence in (Gauged) supergravities, Phys. Rev. D 79 (2009) 084018 [arXiv:0812.2918] [SPIRES].

    ADS  Google Scholar 

  9. H. Isono, T.-S. Tai and W.-Y. Wen, Kerr/CFT correspondence and five-dimensional BMPV black holes, Int. J. Mod. Phys. A 24 (2009) 5659 [arXiv:0812.4440] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. T. Azeyanagi, N. Ogawa and S. Terashima, The Kerr/CFT correspondence and string theory, Phys. Rev. D 79 (2009) 106009 [arXiv:0812.4883] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. J.-J. Peng and S.-Q. Wu, Extremal kerr black hole/CFT correspondence in the five dimensional Gódel universe, Phys. Lett. B 673 (2009) 216 [arXiv:0901.0311] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. F. Loran and H. Soltanpanahi, 5D extremal rotating black holes and CFT duals, Class. Quant. Grav. 26 (2009) 155019 [arXiv:0901.1595] [SPIRES].

    Article  ADS  Google Scholar 

  13. C.-M. Chen and J.E. Wang, Holographic duals of black holes in five-dimensional minimal supergravity, Class. Quant. Grav. 27 (2010) 075004 [arXiv:0901.0538] [SPIRES].

    Article  ADS  Google Scholar 

  14. A.M. Ghezelbash, Kerr/CFT correspondence in the low energy limit of heterotic string theory, JHEP 08 (2009) 045 [arXiv:0901.1670] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. H. Lü, J.-w. Mei, C.N. Pope and J.F. Vazquez-Poritz, Extremal static AdS black hole/CFT correspondence in gauged supergravities, Phys. Lett. B 673 (2009) 77 [arXiv:0901.1677] [SPIRES].

    ADS  Google Scholar 

  16. G. Compere, K. Murata and T. Nishioka, Central charges in extreme black hole/CFT correspondence, JHEP 05 (2009) 077 [arXiv:0902.1001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. K. Hotta, Holographic RG flow dual to attractor flow in extremal black holes, Phys. Rev. D 79 (2009) 104018 [arXiv:0902.3529] [SPIRES].

    ADS  Google Scholar 

  18. D. Astefanesei and Y.K. Srivastava, CFT duals for attractor horizons, Nucl. Phys. B 822 (2009) 283 [arXiv:0902.4033] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. A.M. Ghezelbash, Kerr-Bolt spacetimes and Kerr/CFT correspondence, arXiv:0902.4662 [SPIRES].

  20. C. Krishnan and S. Kuperstein, A comment on Kerr-CFT and Wald entropy, Phys. Lett. B 677 (2009) 326 [arXiv:0903.2169] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. T. Azeyanagi, G. Compere, N. Ogawa, Y. Tachikawa and S. Terashima, Higher-derivative corrections to the asymptotic virasoro symmetry of 4D extremal black holes, Prog. Theor. Phys. 122 (2009) 355 [arXiv:0903.4176] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  22. M.R. Garousi and A. Ghodsi, The RN/CFT correspondence, Phys. Lett. B 687 (2010) 79 [arXiv:0902.4387] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. X.-N. Wu and Y. Tian, Extremal isolated horizon/CFT correspondence, Phys. Rev. D 80 (2009) 024014 [arXiv:0904.1554] [SPIRES].

    ADS  Google Scholar 

  24. J. Rasmussen, Isometry-preserving boundary conditions in the Kerr/CFT correspondence, Int. J. Mod. Phys. A 25 (2010) 1597 [arXiv:0908.0184] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. J.-J. Peng and S.-Q. Wu, Extremal Kerr/CFT correspondence of five-dimensional rotating (charged) black holes with squashed horizons, Nucl. Phys. B 828 (2010) 273 [arXiv:0911.5070] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. J. Rasmussen, A note on Kerr/CFT and free fields, arXiv:0909.2924 [SPIRES].

  27. I. Bredberg, T. Hartman, W. Song and A. Strominger, Black Hole Superradiance from Kerr/CFT, JHEP 04 (2010) 019 [arXiv:0907.3477] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. T. Hartman, W. Song and A. Strominger, Holographic derivation of Kerr-Newman scattering amplitudes for general charge and spin, JHEP 03 (2010) 118 [arXiv:0908.3909] [SPIRES].

    Article  ADS  Google Scholar 

  29. M. Cvetič and F. Larsen, Greybody factors and charges in Kerr/CFT, JHEP 09 (2009) 088 [arXiv:0908.1136] [SPIRES].

    Article  ADS  Google Scholar 

  30. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. B. Chen, B. Ning and Z.-b. Xu, Real-time correlators in warped AdS/CFT correspondence, JHEP 02 (2010) 031 [arXiv:0911.0167] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. B. Chen and C.-S. Chu, Real-time correlators in Kerr/CFT correspondence, JHEP 05 (2010) 004 [arXiv:1001.3208] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. M. Becker, S. Cremonini and W. Schulgin, Extremal three-point correlators in Kerr/CFT, arXiv:1004.1174 [SPIRES];

  34. E. Barnes, D. Vaman, C. Wu and P. Arnold, Real-time finite-temperature correlators from AdS/CFT, Phys. Rev. D 82 (2010) 025019 [arXiv:1004.1179] [SPIRES].

    ADS  Google Scholar 

  35. A. Castro, A. Maloney and A. Strominger, Hidden conformal symmetry of the Kerr black hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. C. Krishnan, Hidden conformal symmetries of five-dimensional black holes, JHEP 07 (2010) 039 [arXiv:1004.3537] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. C.-M. Chen and J.-R. Sun, Hidden conformal symmetry of the Reissner-Nordström black holes, arXiv:1004.3963 [SPIRES].

  38. Y.-Q. Wang and Y.-X. Liu, Hidden conformal symmetry of the Kerr-Newman black hole, arXiv:1004.4661 [SPIRES].

  39. B. Chen and J. Long, Real-time correlators and hidden conformal symmetry in Kerr/CFT correspondence, JHEP 06 (2010) 018 [arXiv:1004.5039] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. M. Becker, S. Cremonini and W. Schulgin, Correlation functions and hidden conformal symmetry of Kerr black holes, arXiv:1005.3571 [SPIRES].

  41. R. Li, M.-F. Li and J.-R. Ren, Entropy of Kaluza-Klein black hole from Kerr/CFT correspondence, Phys. Lett. B 691 (2010) 249 [arXiv:1004.5335] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. D. Chen, P. Wang and H. Wu, Hidden conformal symmetry of rotating charged black holes, arXiv:1005.1404 [SPIRES].

  43. C. Krishnan, Black Hole Vacua and Rotation, arXiv:1005.1629 [SPIRES].

  44. T. Hartman, K. Murata, T. Nishioka and A. Strominger, CFT duals for extreme black holes, JHEP 04 (2009) 019 [arXiv:0811.4393] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. J. Rasmussen, On the CFT duals for near-extremal black holes, arXiv:1005.2255 [SPIRES].

  48. J.L. Cardy, Conformal invariance and universality in finite size scaling, J. Phys. A -Math. Gen. A 17 (1984) L385.

    Article  MathSciNet  ADS  Google Scholar 

  49. J.M. Maldacena and A. Strominger, Universal low-energy dynamics for rotating black holes, Phys. Rev. D 56 (1997) 4975 [hep-th/9702015] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. E. Newman and R. Penrose, An Approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3 (1962) 566 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. U. Khanal, Rotating black hole in asymptotic de Sitter space: perturbation of the space-time with spin fields, Phys. Rev. D 28 (1983) 1291 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  52. C.M. Chambers and I.G. Moss, Stability of the Cauchy horizon in Kerr-de Sitter space-times, Class. Quant. Grav. 11 (1994) 1035 [gr-qc/9404015] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. S.P. Robinson and F. Wilczek, A relationship between Hawking radiation and gravitational anomalies, Phys. Rev. Lett. 95 (2005) 011303 [gr-qc/0502074] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. M. Cvetič and F. Larsen, Greybody factors for black holes in four dimensions: particles with spin, Phys. Rev. D 57 (1998) 6297 [hep-th/9712118] [SPIRES].

    ADS  Google Scholar 

  55. S. Iso, H. Umetsu and F. Wilczek, Hawking radiation from charged black holes via gauge and gravitational anomalies, Phys. Rev. Lett. 96 (2006) 151302 [hep-th/0602146] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. S. Iso, H. Umetsu and F. Wilczek, Anomalies, Hawking radiations and regularity in rotating black holes, Phys. Rev. D 74 (2006) 044017 [hep-th/0606018] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  57. Z. Xu and B. Chen, Hawking radiation from general Kerr-(anti)de Sitter black holes, Phys. Rev. D 75 (2007) 024041 [hep-th/0612261] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Additional information

ArXiv ePrint: 1006.0157

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Long, J. On holographic description of the Kerr-Newman-AdS-dS black holes. J. High Energ. Phys. 2010, 65 (2010). https://doi.org/10.1007/JHEP08(2010)065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2010)065

Keywords

Navigation