Skip to main content
Log in

The intermediate scale MSSM, the Higgs mass and F-theory unification

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Even if SUSY is not present at the Electro-Weak scale, string theory suggests its presence at some scale M SS below the string scale M s to guarantee the absence of tachyons. We explore the possible value of M SS consistent with gauge coupling unification and known sources of SUSY breaking in string theory. Within F-theory SU(5) unification these two requirements fix M SS  ≃ 5 × 1010 GeV at an intermediate scale and a unification scale M c  ≃ 3 × 1014 GeV. As a direct consequence one also predicts the vanishing of the quartic Higgs SM self-coupling at M SS  ≃ 1011 GeV. This is tantalizingly consistent with recent LHC hints of a Higgs mass in the region 124-126 GeV. With such a low unification scale M c  ≃ 3 × 1014GeV one may worry about too fast proton decay via dimension 6 operators. However in the F-theory GUT context SU(5) is broken to the SM via hypercharge flux. We show that this hypercharge flux deforms the SM fermion wave functions leading to a suppression, avoiding in this way the strong experimental proton decay constraints. In these constructions there is generically an axion with a scale of size f a  ≃ M c /(4π)2 ≃ 1012 GeV which could solve the strong CP problem and provide for the observed dark matter. The price to pay for these attractive features is to assume that the hierarchy problem is solved due to anthropic selection in a string landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, Combination of SM Higgs Searches, PAS-HIG-11-032 (December 2011).

  2. ATLAS collaboration, Combination of Higgs Boson Searches with up to 4.9 fb −1 of pp Collisions Data Taken at a center-of-mass energy of 7 TeV with the ATLAS Experiment at the LHC, ATLAS-CONF-2011-163 (December 2011).

  3. H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].

    ADS  Google Scholar 

  4. L.J. Hall, D. Pinner and J.T. Ruderman, A Natural SUSY Higgs Near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    ADS  Google Scholar 

  6. S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs Boson Mass Predictions in SUGRA Unification, Recent LHC-7 Results and Dark Matter, Phys. Rev. D 85 (2012) 075001 [arXiv:1112.3645] [INSPIRE].

    ADS  Google Scholar 

  7. I. Gogoladze, Q. Shafi and C.S. Un, Higgs Boson Mass from t-b-τ Yukawa Unification, arXiv:1112.2206 [INSPIRE].

  8. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  9. P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].

    ADS  Google Scholar 

  10. J.L. Evans, M. Ibe, S. Shirai and T.T. Yanagida, A 125 GeV Higgs Boson and Muon g-2 in More Generic Gauge Mediation, Phys. Rev. D 85 (2012) 095004 [arXiv:1201.2611] [INSPIRE].

    ADS  Google Scholar 

  11. L. Aparicio, D. Cerdeno and L. Ibáñez, A 119-125 GeV Higgs from a string derived slice of the CMSSM, JHEP 04 (2012) 126 [arXiv:1202.0822] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C.J. Hogan, Why the universe is just so, Rev. Mod. Phys. 72 (2000) 1149 [astro-ph/9909295] [INSPIRE].

    Article  ADS  Google Scholar 

  13. C.J. Hogan, Nuclear astrophysics of worlds in the string landscape, Phys. Rev. D 74 (2006) 123514 [astro-ph/0602104] [INSPIRE].

    ADS  Google Scholar 

  14. L.J. Hall and Y. Nomura, Evidence for the Multiverse in the Standard Model and Beyond, Phys. Rev. D 78 (2008) 035001 [arXiv:0712.2454] [INSPIRE].

    ADS  Google Scholar 

  15. T. Damour and J.F. Donoghue, Constraints on the variability of quark masses from nuclear binding, Phys. Rev. D 78 (2008) 014014 [arXiv:0712.2968] [INSPIRE].

    ADS  Google Scholar 

  16. J.F. Donoghue, The Fine-tuning problems of particle physics and anthropic mechanisms, arXiv:0710.4080 [INSPIRE].

  17. J.F. Donoghue, K. Dutta, A. Ross and M. Tegmark, Likely values of the Higgs vacuum expectation value, Phys. Rev. D 81 (2010) 073003 [arXiv:0903.1024] [INSPIRE].

    ADS  Google Scholar 

  18. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    Article  ADS  Google Scholar 

  19. G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [INSPIRE].

  20. L.J. Hall and Y. Nomura, A Finely-Predicted Higgs Boson Mass from A Finely-Tuned Weak Scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].

    Article  ADS  Google Scholar 

  21. G. Giudice and R. Rattazzi, Living Dangerously with Low-Energy Supersymmetry, Nucl. Phys. B 757 (2006) 19 [hep-ph/0606105] [INSPIRE].

    Article  ADS  Google Scholar 

  22. L.J. Hall and Y. Nomura, Spread Supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. C. Liu, A supersymmetry model of leptons, Phys. Lett. B 609 (2005) 111 [hep-ph/0501129] [INSPIRE].

    ADS  Google Scholar 

  24. C. Liu and Z.-h. Zhao, θ 13 and the Higgs mass from high scale supersymmetry, arXiv:1205.3849 [INSPIRE].

  25. J. Unwin, A sharp 141 GeV Higgs prediction from environmental selection, arXiv:1110.0470 [INSPIRE].

  26. M. Cabrera, J. Casas and A. Delgado, Upper Bounds on Superpartner Masses from Upper Bounds on the Higgs Boson Mass, Phys. Rev. Lett. 108 (2012) 021802 [arXiv:1108.3867] [INSPIRE].

    Article  ADS  Google Scholar 

  27. G.F. Giudice and A. Strumia, Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    ADS  Google Scholar 

  29. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto and A. Strumia, Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    ADS  Google Scholar 

  30. M. Holthausen, K.S. Lim and M. Lindner, Planck scale Boundary Conditions and the Higgs Mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].

    Article  ADS  Google Scholar 

  31. C. Wetterich, Where to look for solving the gauge hierarchy problem?, arXiv:1112.2910 [INSPIRE].

  32. G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori and A. Strumia, Higgs mass and vacuum stability in the Standard Model at NNLO, arXiv:1205.6497 [INSPIRE].

  33. K. Chetyrkin and M. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the Standard Model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].

    Article  ADS  Google Scholar 

  34. F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, arXiv:1205.2893 [INSPIRE].

  35. L.E. Ibáñez and A. Uranga, String Theory and Particle Physics. An Introduction to String Phenomenology, Cambridge University Press, Cambridge, U.K. (2012).

    MATH  Google Scholar 

  36. M. Wijnholt, F-theory and unification, Fortsch. Phys. 58 (2010) 846 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. J.J. Heckman, Particle Physics Implications of F-theory, Ann. Rev. Nucl. Part. Sci. 60 (2010) 237 [arXiv:1001.0577] [INSPIRE].

    Article  ADS  Google Scholar 

  38. T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. L.E. Ibáñez, From Strings to the LHC: Les Houches Lectures on String Phenomenology, arXiv:1204.5296 [INSPIRE].

  40. R. Donagi and M. Wijnholt, Model Building with F-theory, arXiv:0802.2969 [INSPIRE].

  41. R. Blumenhagen, Gauge Coupling Unification in F-theory Grand Unified Theories, Phys. Rev. Lett. 102 (2009) 071601 [arXiv:0812.0248] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. J.P. Conlon and E. Palti, On Gauge Threshold Corrections for Local IIB/F-theory GUTs, Phys. Rev. D 80 (2009) 106004 [arXiv:0907.1362] [INSPIRE].

    ADS  Google Scholar 

  43. C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory - I, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory - II: Experimental Predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. R. Donagi and M. Wijnholt, Model Building with F-theory, arXiv:0802.2969 [INSPIRE].

  49. R. Donagi and M. Wijnholt, Breaking GUT Groups in F-theory, arXiv:0808.2223 [INSPIRE].

  50. M. Graña, MSSM parameters from supergravity backgrounds, Phys. Rev. D 67 (2003) 066006 [hep-th/0209200] [INSPIRE].

    ADS  Google Scholar 

  51. P.G. Cámara, L. Ibáñez and A. Uranga, Flux induced SUSY breaking soft terms, Nucl. Phys. B 689 (2004) 195 [hep-th/0311241] [INSPIRE].

    Article  ADS  Google Scholar 

  52. D. Lüst, S. Reffert and S. Stieberger, Flux-induced soft supersymmetry breaking in chiral type IIB orientifolds with D3/D7-branes, Nucl. Phys. B 706 (2005) 3 [hep-th/0406092] [INSPIRE].

    Article  ADS  Google Scholar 

  53. P.G. Cámara, L. Ibáñez and A. Uranga, Flux-induced SUSY-breaking soft terms on D7-D3 brane systems, Nucl. Phys. B 708 (2005) 268 [hep-th/0408036] [INSPIRE].

    Article  ADS  Google Scholar 

  54. D. Lüst, S. Reffert and S. Stieberger, MSSM with soft SUSY breaking terms from D7-branes with fluxes, Nucl. Phys. B 727 (2005) 264 [hep-th/0410074] [INSPIRE].

    Article  ADS  Google Scholar 

  55. M. Graña, T.W. Grimm, H. Jockers and J. Louis, Soft supersymmetry breaking in Calabi-Yau orientifolds with D-branes and fluxes, Nucl. Phys. B 690 (2004) 21 [hep-th/0312232] [INSPIRE].

    Article  ADS  Google Scholar 

  56. A. Font and L. Ibáñez, SUSY-breaking soft terms in a MSSM magnetized D7-brane model, JHEP 03 (2005) 040 [hep-th/0412150] [INSPIRE].

    Article  ADS  Google Scholar 

  57. S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the Scale of Unification, Phys. Rev. D 24 (1981) 1681 [INSPIRE].

    ADS  Google Scholar 

  58. L.E. Ibáñez and G.G. Ross, Low-Energy Predictions in Supersymmetric Grand Unified Theories, Phys. Lett. B 105 (1981) 439 [INSPIRE].

    ADS  Google Scholar 

  59. S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].

    Article  ADS  Google Scholar 

  60. Y.-J. Huo, T. Li and D.V. Nanopoulos, Canonical Gauge Coupling Unification in the Standard Model with High-Scale Supersymmetry Breaking, JHEP 09 (2011) 003 [arXiv:1011.0964] [INSPIRE].

    Article  ADS  Google Scholar 

  61. P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept. 441 (2007) 191 [hep-ph/0601023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. G. Aldazabal, L.E. Ibáñez, F. Quevedo and A. Uranga, D-branes at singularities: A Bottom up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [INSPIRE].

    Article  ADS  Google Scholar 

  63. L.E. Ibáñez, F. Marchesano and R. Rabadán, Getting just the standard model at intersecting branes, JHEP 11 (2001) 002 [hep-th/0105155] [INSPIRE].

    Google Scholar 

  64. M. Berkooz, M.R. Douglas and R.G. Leigh, Branes intersecting at angles, Nucl. Phys. B 480 (1996) 265 [hep-th/9606139] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. A. Font and L. Ibáñez, Matter wave functions and Yukawa couplings in F-theory Grand Unification, JHEP 09 (2009) 036 [arXiv:0907.4895] [INSPIRE].

    Article  ADS  Google Scholar 

  66. L. Aparicio, A. Font, L.E. Ibáñez and F. Marchesano, Flux and Instanton Effects in Local F-theory Models and Hierarchical Fermion Masses, JHEP 08 (2011) 152 [arXiv:1104.2609] [INSPIRE].

    Article  ADS  Google Scholar 

  67. R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua: The Seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113 [hep-th/0609191] [INSPIRE].

    Article  ADS  Google Scholar 

  68. L. Ibáñez and A. Uranga, Neutrino Majorana Masses from String Theory Instanton Effects, JHEP 03 (2007) 052 [hep-th/0609213] [INSPIRE].

    Article  ADS  Google Scholar 

  69. B. Florea, S. Kachru, J. McGreevy and N. Saulina, Stringy Instantons and Quiver Gauge Theories, JHEP 05 (2007) 024 [hep-th/0610003] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-Brane Instantons in Type II Orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].

    Article  ADS  Google Scholar 

  71. M. Cvetič and J. Halverson, TASI Lectures: Particle Physics from Perturbative and Non-perturbative Effects in D-braneworlds, arXiv:1101.2907 [INSPIRE].

  72. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  73. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  74. J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  75. J.P. Conlon, D. Cremades and F. Quevedo, Kähler potentials of chiral matter fields for Calabi-Yau string compactifications, JHEP 01 (2007) 022 [hep-th/0609180] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  76. L. Aparicio, D. Cerdeno and L. Ibáñez, Modulus-dominated SUSY-breaking soft terms in F-theory and their test at LHC, JHEP 07 (2008) 099 [arXiv:0805.2943] [INSPIRE].

    Article  ADS  Google Scholar 

  77. A. Brignole, L.E. Ibáñez and C. Muñoz, Orbifold induced mu term and electroweak symmetry breaking, Phys. Lett. B 387 (1996) 769 [hep-ph/9607405] [INSPIRE].

    ADS  Google Scholar 

  78. A. Brignole, L.E. Ibáñez, C. Muñoz and C. Scheich, Some issues in soft SUSY breaking terms from dilaton/moduli sectors, Z. Phys. C 74 (1997) 157 [hep-ph/9508258] [INSPIRE].

    Google Scholar 

  79. A. Hebecker, A.K. Knochel and T. Weigand, A Shift Symmetry in the Higgs Sector: Experimental Hints and Stringy Realizations, JHEP 06 (2012) 093 [arXiv:1204.2551] [INSPIRE].

    Article  ADS  Google Scholar 

  80. A. Brignole, L.E. Ibáñez and C. Muñoz, Soft supersymmetry breaking terms from supergravity and superstring models, hep-ph/9707209 [INSPIRE].

  81. L.E. Ibáñez, C. Lopez and C. Muñoz, The Low-Energy Supersymmetric Spectrum According to N = 1 Supergravity Guts, Nucl. Phys. B 256 (1985) 218 [INSPIRE].

    Article  ADS  Google Scholar 

  82. S. Weinberg, Anthropic Bound on the Cosmological Constant, Phys. Rev. Lett. 59 (1987) 2607 [INSPIRE].

    Article  ADS  Google Scholar 

  83. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  84. Super-Kamiokande collaboration, H. Nishino et al., Search for Proton Decay via pe + π 0 and p>μ + π 0 in a Large Water Cherenkov Detector, Phys. Rev. Lett. 102 (2009) 141801 [arXiv:0903.0676] [INSPIRE].

    Article  ADS  Google Scholar 

  85. A. Font et al., Non-perturbative effects and Yukawa hierarchies in local F-theory Models, to appear (2012).

  86. J.J. Heckman and C. Vafa, Flavor Hierarchy From F-theory, Nucl. Phys. B 837 (2010) 137 [arXiv:0811.2417] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  87. H. Hayashi, T. Kawano, R. Tatar and T. Watari, Codimension-3 Singularities and Yukawa Couplings in F-theory, Nucl. Phys. B 823 (2009) 47 [arXiv:0901.4941] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  88. G. Leontaris and G. Ross, Yukawa couplings and fermion mass structure in F-theory GUTs, JHEP 02 (2011) 108 [arXiv:1009.6000] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  89. S. Cecotti, M.C. Cheng, J.J. Heckman and C. Vafa, Yukawa Couplings in F-theory and Non-Commutative Geometry, arXiv:0910.0477 [INSPIRE].

  90. J.P. Conlon and E. Palti, Aspects of Flavour and Supersymmetry in F-theory GUTs, JHEP 01 (2010) 029 [arXiv:0910.2413] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  91. F. Marchesano and L. Martucci, Non-perturbative effects on seven-brane Yukawa couplings, Phys. Rev. Lett. 104 (2010) 231601 [arXiv:0910.5496] [INSPIRE].

    Article  ADS  Google Scholar 

  92. P.G. Camara, E. Dudas and E. Palti, Massive wavefunctions, proton decay and FCNCs in local F-theory GUTs, JHEP 12 (2011) 112 [arXiv:1110.2206] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  93. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  94. M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].

    ADS  Google Scholar 

  95. A. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (In Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [INSPIRE].

    Google Scholar 

  96. ADMX collaboration, S. Asztalos et al., A SQUID-based microwave cavity search for dark-matter axions, Phys. Rev. Lett. 104 (2010) 041301 [arXiv:0910.5914] [INSPIRE].

    Article  ADS  Google Scholar 

  97. G.F. Giudice, R. Rattazzi and A. Strumia, Unificaxion, arXiv:1204.5465 [INSPIRE].

  98. J.P. Conlon, The QCD axion and moduli stabilisation, JHEP 05 (2006) 078 [hep-th/0602233] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  99. K. Bobkov, V. Braun, P. Kumar and S. Raby, Stabilizing All Kähler Moduli in Type IIB Orientifolds, JHEP 12 (2010) 056 [arXiv:1003.1982] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  100. M. Cicoli, M. Goodsell and A. Ringwald, The type IIB string axiverse and its low-energy phenomenology, arXiv:1206.0819 [INSPIRE].

  101. R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking and inflation, JHEP 12 (2004) 004 [hep-th/0411011] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  102. I. Antoniadis and S. Dimopoulos, Splitting supersymmetry in string theory, Nucl. Phys. B 715 (2005) 120 [hep-th/0411032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  103. C. Kokorelis, Standard models and split supersymmetry from intersecting brane orbifolds, hep-th/0406258 [INSPIRE].

  104. I. Antoniadis, K. Benakli, A. Delgado, M. Quirós and M. Tuckmantel, Split extended supersymmetry from intersecting branes, Nucl. Phys. B 744 (2006) 156 [hep-th/0601003] [INSPIRE].

    Article  ADS  Google Scholar 

  105. D. Cremades, L. Ibáñez and F. Marchesano, More about the standard model at intersecting branes, hep-ph/0212048 [INSPIRE].

  106. A.M. Uranga, Chiral four-dimensional string compactifications with intersecting D-branes, Class. Quant. Grav. 20 (2003) S373 [hep-th/0301032] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  107. R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [INSPIRE].

    Article  ADS  Google Scholar 

  108. R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].

    Article  ADS  Google Scholar 

  109. F. Marchesano, Progress in D-brane model building, Fortsch. Phys. 55 (2007) 491 [hep-th/0702094] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Marchesano.

Additional information

ArXiv ePrint: 1206.2655

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibáñez, L.E., Marchesano, F., Regalado, D. et al. The intermediate scale MSSM, the Higgs mass and F-theory unification. J. High Energ. Phys. 2012, 195 (2012). https://doi.org/10.1007/JHEP07(2012)195

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)195

Keywords

Navigation