Skip to main content
Log in

Quiver invariants from intrinsic Higgs states

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In study of four-dimensional BPS states, quiver quantum mechanics plays a central role. The Coulomb phases capture the multi-centered nature of such states, and are well understood in the context of wall-crossing. The Higgs phases are given typically by F-term-induced complete intersections in the ambient D-term-induced varieties, and the ground states can be far more numerous than the Coulomb phase counterparts. We observe that the Higgs phase BPS states are naturally and geometrically grouped into two parts, with one part given by the pulled-back cohomology from the D-term-induced ambient space. We propose that these pulled-back states are in one-to-one correspondence with the Coulomb phase states. This also leads us to conjecture that the index associated with the rest, intrinsic to the Higgs phase, is a fundamental invariant of quivers, independent of branches. For simple circular quivers, these intrinsic Higgs states belong to the middle cohomology and thus are all angular momentum singlets, supporting the single-center black hole interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Prasad and C.M. Sommerfield, An exact classical solution for the ’t Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett. 35 (1975) 760 [INSPIRE].

    Article  ADS  Google Scholar 

  2. E. Bogomolny, Stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [Yad. Fiz. 24 (1976) 861] [INSPIRE].

  3. F. Denef, Quantum quivers and Hall/hole halos, JHEP 10 (2002) 023 [hep-th/0206072] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485-486] [hep-th/9407087] [INSPIRE].

  5. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. F. Ferrari and A. Bilal, The strong coupling spectrum of the Seiberg-Witten theory, Nucl. Phys. B 469 (1996) 387 [hep-th/9602082] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. K.-M. Lee and P. Yi, Dyons in N = 4 supersymmetric theories and three pronged strings, Phys. Rev. D 58 (1998) 066005 [hep-th/9804174] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. D. Bak, C.-k. Lee, K.-M. Lee and P. Yi, Low-energy dynamics for 1/4 BPS dyons, Phys. Rev. D 61 (2000) 025001 [hep-th/9906119] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. J.P. Gauntlett, N. Kim, J. Park and P. Yi, Monopole dynamics and BPS dyons N = 2 super Yang-Mills theories, Phys. Rev. D 61 (2000) 125012 [hep-th/9912082] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. J.P. Gauntlett, C.-j. Kim, K.-M. Lee and P. Yi, General low-energy dynamics of supersymmetric monopoles, Phys. Rev. D 63 (2001) 065020 [hep-th/0008031] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. E.J. Weinberg and P. Yi, Magnetic monopole dynamics, supersymmetry and duality, Phys. Rept. 438 (2007) 65 [hep-th/0609055] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Stern and P. Yi, Counting Yang-Mills dyons with index theorems, Phys. Rev. D 62 (2000) 125006 [hep-th/0005275] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, Quantizing N = 2 multicenter solutions, JHEP 05 (2009) 002 [arXiv:0807.4556] [INSPIRE].

    Article  Google Scholar 

  16. J. Manschot, B. Pioline and A. Sen, Wall crossing from Boltzmann black hole halos, JHEP 07 (2011) 059 [arXiv:1011.1258] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. B. Pioline, Four ways across the wall, J. Phys. Conf. Ser. 346 (2012) 012017 [arXiv:1103.0261] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. Manschot, B. Pioline and A. Sen, A fixed point formula for the index of multi-centered N = 2 black holes, JHEP 05 (2011) 057 [arXiv:1103.1887] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Lee and P. Yi, Framed BPS states, moduli dynamics and wall-crossing, JHEP 04 (2011) 098 [arXiv:1102.1729] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. H. Kim, J. Park, Z. Wang and P. Yi, Ab initio wall-crossing, JHEP 09 (2011) 079 [arXiv:1107.0723] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Sen, Equivalence of three wall crossing formulae, arXiv:1112.2515 [INSPIRE].

  22. M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435.

  23. D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. D. Joyce and Y. Song, A theory of generalized Donaldson-Thomas invariants, arXiv:0810.5645 [INSPIRE].

  25. P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience, U.S.A. (1978).

    MATH  Google Scholar 

  26. A. Sen, Arithmetic of quantum entropy function, JHEP 08 (2009) 068 [arXiv:0903.1477] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Sen, How do black holes predict the sign of the Fourier coefficients of Siegel modular forms?, Gen. Rel. Grav. 43 (2011) 2171 [arXiv:1008.4209] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  28. I. Bena, M. Berkooz, J. de Boer, S. El-Showk and D. Van den Bleeken, Scaling BPS solutions and pure-Higgs states, arXiv:1205.5023 [INSPIRE].

  29. S.-J. Lee, Z.-L. Wang and P. Yi, BPS states, refined indices, and quiver invariants, arXiv:1207.0821 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piljin Yi.

Additional information

ArXiv ePrint: 1205.6511

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SJ., Wang, ZL. & Yi, P. Quiver invariants from intrinsic Higgs states. J. High Energ. Phys. 2012, 169 (2012). https://doi.org/10.1007/JHEP07(2012)169

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)169

Keywords

Navigation