Skip to main content
Log in

Efficiency improvements for the numerical computation of NLO corrections

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper we discuss techniques, which lead to a significant improvement of the efficiency of the Monte Carlo integration, when one-loop QCD amplitudes are calculated numerically with the help of the subtraction method and contour deformation. The techniques discussed are: holomorphic and non-holomorphic division into sub-channels, optimisation of the integration contour, improvement of the ultraviolet subtraction terms, importance sampling and antithetic variates in loop momentum space, recurrence relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Becker, D. Goetz, C. Reuschle, C. Schwan and S. Weinzierl, NLO results for five, six and seven jets in electron-positron annihilation, Phys. Rev. Lett. 108 (2012) 032005 [arXiv:1111.1733] [INSPIRE].

    Article  ADS  Google Scholar 

  2. S. Becker, C. Reuschle and S. Weinzierl, Numerical NLO QCD calculations, JHEP 12 (2010) 013 [arXiv:1010.4187] [INSPIRE].

    Article  ADS  Google Scholar 

  3. M. Assadsolimani, S. Becker, C. Reuschle and S. Weinzierl, Infrared singularities in one-loop amplitudes, Nucl. Phys. Proc. Suppl. 205-206 (2010) 224 [arXiv:1006.4609] [INSPIRE].

    Article  Google Scholar 

  4. M. Assadsolimani, S. Becker and S. Weinzierl, A simple formula for the infrared singular part of the integrand of one-loop QCD amplitudes, Phys. Rev. D 81 (2010) 094002 [arXiv:0912.1680] [INSPIRE].

    ADS  Google Scholar 

  5. Z. Nagy and D.E. Soper, General subtraction method for numerical calculation of one loop QCD matrix elements, JHEP 09 (2003) 055 [hep-ph/0308127] [INSPIRE].

    Article  ADS  Google Scholar 

  6. W. Gong, Z. Nagy and D.E. Soper, Direct numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev. D 79 (2009) 033005 [arXiv:0812.3686] [INSPIRE].

    ADS  Google Scholar 

  7. C. Anastasiou, S. Beerli and A. Daleo, Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically, JHEP 05 (2007) 071 [hep-ph/0703282] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. Z. Nagy and D.E. Soper, Numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev. D 74 (2006) 093006 [hep-ph/0610028] [INSPIRE].

    ADS  Google Scholar 

  9. D.E. Soper, Choosing integration points for QCD calculations by numerical integration, Phys. Rev. D 64 (2001) 034018 [hep-ph/0103262] [INSPIRE].

    ADS  Google Scholar 

  10. D.E. Soper, Techniques for QCD calculations by numerical integration, Phys. Rev. D 62 (2000) 014009 [hep-ph/9910292] [INSPIRE].

    ADS  Google Scholar 

  11. D.E. Soper, QCD calculations by numerical integration, Phys. Rev. Lett. 81 (1998) 2638 [hep-ph/9804454] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C. Berger et al., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [INSPIRE].

    Article  ADS  Google Scholar 

  13. C. Berger et al., Next-to-leading order QCD predictions for W + 3-jet distributions at hadron colliders, Phys. Rev. D 80 (2009) 074036 [arXiv:0907.1984] [INSPIRE].

    ADS  Google Scholar 

  14. C. Berger et al., Next-to-leading order QCD predictions for Z, γ * + 3-jet distributions at the Tevatron, Phys. Rev. D 82 (2010) 074002 [arXiv:1004.1659] [INSPIRE].

    ADS  Google Scholar 

  15. C. Berger et al., Precise predictions for W + 4 jet production at the Large Hadron Collider, Phys. Rev. Lett. 106 (2011) 092001 [arXiv:1009.2338] [INSPIRE].

    Article  ADS  Google Scholar 

  16. H. Ita et al., Precise predictions for Z + 4 jets at hadron colliders, Phys. Rev. D 85 (2012) 031501 [arXiv:1108.2229] [INSPIRE].

    ADS  Google Scholar 

  17. Z. Bern et al., Four-jet production at the Large Hadron Collider at next-to-leading order in QCD, arXiv:1112.3940 [INSPIRE].

  18. R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W +3 jet production, JHEP 04 (2009) 077 [arXiv:0901.4101] [INSPIRE].

    Article  ADS  Google Scholar 

  19. R.K. Ellis, K. Melnikov and G. Zanderighi, W + 3 jet production at the Tevatron, Phys. Rev. D 80 (2009) 094002 [arXiv:0906.1445] [INSPIRE].

    ADS  Google Scholar 

  20. T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, Next-to-leading order QCD predictions for W + W + jj production at the LHC, JHEP 12 (2010) 053 [arXiv:1007.5313] [INSPIRE].

    Article  ADS  Google Scholar 

  21. G. Bevilacqua, M. Czakon, C. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of \( pp \to t\overline t + {2} \) jets at next-to-leading order, Phys. Rev. Lett. 104 (2010) 162002 [arXiv:1002.4009] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G. Bevilacqua, M. Czakon, C. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO wishlist: \( pp \to t\overline t b\overline b \), JHEP 09 (2009) 109 [arXiv:0907.4723] [INSPIRE].

    Article  ADS  Google Scholar 

  23. R. Frederix, S. Frixione, K. Melnikov and G. Zanderighi, NLO QCD corrections to five-jet production at LEP and the extraction of α s (M Z ), JHEP 11 (2010) 050 [arXiv:1008.5313] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to \( pp \to t\overline t b\overline b + X \) at the LHC, Phys. Rev. Lett. 103 (2009) 012002 [arXiv:0905.0110] [INSPIRE].

    Article  ADS  Google Scholar 

  25. V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].

    Article  ADS  Google Scholar 

  26. G. Bevilacqua et al., HELAC-NLO, arXiv:1110.1499 [INSPIRE].

  27. G. Cullen et al., Golem95C: a library for one-loop integrals with complex masses, Comput. Phys. Commun. 182 (2011) 2276 [arXiv:1101.5595] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. G. Cullen et al., Automated one-loop calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Badger, B. Biedermann and P. Uwer, NGluon: a package to calculate one-loop multi-gluon amplitudes, Comput. Phys. Commun. 182 (2011) 1674 [arXiv:1011.2900] [INSPIRE].

    Article  ADS  Google Scholar 

  30. T. Binoth, J.-P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009)2317 [arXiv:0810.0992] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  31. A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 199 [arXiv:1005.2076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].

    Article  ADS  Google Scholar 

  34. S. Catani and M. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503-504] [hep-ph/9605323] [INSPIRE].

  35. S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].

    Article  ADS  Google Scholar 

  36. L. Phaf and S. Weinzierl, Dipole formalism with heavy fermions, JHEP 04 (2001) 006 [hep-ph/0102207] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].

    Article  ADS  Google Scholar 

  38. G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color flow decomposition of QCD amplitudes, Phys. Rev. D 67 (2003) 014026 [hep-ph/0209271] [INSPIRE].

    ADS  Google Scholar 

  40. S. Weinzierl, Automated computation of spin- and colour-correlated Born matrix elements, Eur. Phys. J. C 45 (2006) 745 [hep-ph/0510157] [INSPIRE].

    Article  ADS  Google Scholar 

  41. Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to two quark three gluon amplitudes, Nucl. Phys. B 437 (1995) 259 [hep-ph/9409393] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Weinzierl, Introduction to Monte Carlo methods, hep-ph/0006269 [INSPIRE].

  43. G.P. Lepage, A new algorithm for adaptive multidimensional integration, J. Comput. Phys. 27 (1978) 192 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. G.P. Lepage, VEGAS: an adaptive multidimensional integration program, CLNS-80/447 (1980).

  45. F.A. Berends and W. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].

    Article  ADS  Google Scholar 

  46. P. Draggiotis et al., Recursive equations for arbitrary scattering processes, Nucl. Phys. Proc. Suppl. 160 (2006) 255 [hep-ph/0607034] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. van Hameren, Multi-gluon one-loop amplitudes using tensor integrals, JHEP 07 (2009) 088 [arXiv:0905.1005] [INSPIRE].

    Article  Google Scholar 

  48. F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Weinzierl.

Additional information

ArXiv ePrint: 1205.2096

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, S., Reuschle, C. & Weinzierl, S. Efficiency improvements for the numerical computation of NLO corrections. J. High Energ. Phys. 2012, 90 (2012). https://doi.org/10.1007/JHEP07(2012)090

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)090

Keywords

Navigation