Skip to main content
Log in

Two simple W′ models for the early LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

W′ gauge bosons are good candidates for early LHC discovery. We define two reference models, one containing a W R and one containing a W L , which may serve as “simplified models” for presenting experimental results of W′ searches at the LHC. We present the Tevatron bounds on each model and compute the constraints from precision electroweak observables. We find that indirect low-energy constraints on the W L are quite strong. However, for a W R coupling to right-handed fermions there exists a sizeable region in parameter space beyond the bounds from the Tevatron and low-energy precision measurements where even 50 pb−1 of integrated LHC luminosity are sufficient to discover the W R . The most promising final states are two leptons and two jets, or one lepton recoiling against a “neutrino jet”. A neutrino jet is a collimated object consisting of a hard lepton and two jets arising from the decay of a highly boosted massive neutrino.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LHC New Physics Working Group, SLAC Theory Workshop, September 2010, http://lhcnewphysics.org/.

  2. J. Alwall, P. Schuster and N. Toro, Simplified Models for a First Characterization of New Physics at the LHC, Phys. Rev. D 79 (2009) 075020 [arXiv:0810.3921] [SPIRES].

    ADS  Google Scholar 

  3. R.N. Mohapatra and J.C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D 11 (1975) 2558 [SPIRES].

    ADS  Google Scholar 

  4. R.N. Mohapatra and J.C. Pati, Left-Right Gauge Symmetry and an Isoconjugate Model of CP-violation, Phys. Rev. D 11 (1975) 566 [SPIRES].

    ADS  Google Scholar 

  5. R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [SPIRES].

    ADS  Google Scholar 

  6. R.S. Chivukula et al., A three site higgsless model, Phys. Rev. D 74 (2006) 075011 [hep-ph/0607124] [SPIRES].

    ADS  Google Scholar 

  7. V.D. Barger, W.-Y. Keung and E. Ma, A Gauge Model with Light W and Z Bosons, Phys. Rev. D 22 (1980) 727 [SPIRES].

    ADS  Google Scholar 

  8. V.D. Barger, W.-Y. Keung and E. Ma, DOUBLING OF WEAK GAUGE BOSONS IN AN EXTENSION OF THE STANDARD MODEL, Phys. Rev. Lett. 44 (1980) 1169 [SPIRES].

    Article  ADS  Google Scholar 

  9. H. Georgi, E.E. Jenkins and E.H. Simmons, ununifying the standard model, Phys. Rev. Lett. 62 (1989) 2789 [Erratum ibid. 63 (1989) 1540].[SPIRES].

    Article  ADS  Google Scholar 

  10. H. Georgi, E.E. Jenkins and E.H. Simmons, The ununified standard model, Nucl. Phys. B 331 (1990) 541 [SPIRES].

    Article  ADS  Google Scholar 

  11. E. Malkawi, T.M.P. Tait and C.P. Yuan, A Model of strong flavor dynamics for the top quark, Phys. Lett. B 385 (1996) 304 [hep-ph/9603349] [SPIRES].

    ADS  Google Scholar 

  12. X. Li and E. Ma, Gauge Model of Generation Nonuniversality, Phys. Rev. Lett. 47 (1981) 1788 [SPIRES].

    Article  ADS  Google Scholar 

  13. X.-G. He and G. Valencia, The \( Z \to b\bar{b} \) decay asymmetry and left-right models, Phys. Rev. D 66 (2002) 013004 [Erratum ibid. D 66 (2002) 079901] [hep-ph/0203036] [SPIRES].

    ADS  Google Scholar 

  14. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. N. Arkani-Hamed, A.G. Cohen, T. Gregoire and J.G. Wacker, Phenomenology of electroweak symmetry breaking from theory space, JHEP 08 (2002) 020 [hep-ph/0202089] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Schmaltz and D. Tucker-Smith, Little Higgs Review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [SPIRES].

    Article  ADS  Google Scholar 

  18. M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007) 247 [hep-ph/0512128] [SPIRES];

    Article  ADS  Google Scholar 

  19. F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak Limits on General New Vector Bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [SPIRES].

    Article  Google Scholar 

  20. K. Hsieh, K. Schmitz, J.-H. Yu and C.P. Yuan, Global Analysis of General SU(2) × SU(2) × U(1) Models with Precision Data, Phys. Rev. D 82 (2010) 035011 [arXiv:1003.3482] [SPIRES].

    ADS  Google Scholar 

  21. T.G. Rizzo, Z-prime phenomenology and the LHC, hep-ph/0610104 [SPIRES].

  22. D0 collaboration, V.M. Abazov et al., Search for W′ bosons decaying to an electron and a neutrino with the D0 detector, Phys. Rev. Lett. 100 (2008) 031804 [arXiv:0710.2966] [SPIRES].

    Article  ADS  Google Scholar 

  23. The CDF collaboration, T. Aaltonen et al., Search for new particles decaying to dijets in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, CDF Note 9246 (2008).

  24. D0 collaboration, V.M. Abazov et al., Search for WBoson Resonances Decaying to a Top Quark and a Bottom Quark, Phys. Rev. Lett. 100 (2008) 211803 [arXiv:0803.3256] [SPIRES].

    Article  ADS  Google Scholar 

  25. The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment-Detector, Trigger and Physics, arXiv:0901.0512 [SPIRES].

  26. A. Ferrari et al., Sensitivity study for new gauge bosons and right-handed Majorana neutrinos in p p collisions at s = 14-TeV, Phys. Rev. D 62 (2000) 013001 [SPIRES].

    ADS  Google Scholar 

  27. CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: Physics performance, J. Phys. G 34 (2007) 995 [SPIRES].

    ADS  Google Scholar 

  28. S.N. Gninenko, M.M. Kirsanov, N.V. Krasnikov and V.A. Matveev, Detection of heavy Majorana neutrinos and right-handed bosons, Phys. Atom. Nucl. 70 (2007) 441 [SPIRES].

    Article  ADS  Google Scholar 

  29. C.W. Bauer, Z. Ligeti, M. Schmaltz, J. Thaler and D.G.E. Walker, Supermodels for early LHC, Phys. Lett. B 690 (2010) 280 [arXiv:0909.5213] [SPIRES].

    ADS  Google Scholar 

  30. W.-Y. Keung and G. Senjanović, Majorana neutrinos and the production of the right-handed charged gauge boson, Phys. Rev. Lett. 50 (1983) 1427 [SPIRES].

    Article  ADS  Google Scholar 

  31. S. Gopalakrishna, T. Han, I. Lewis, Z.-g. Si and Y.-F. Zhou, Chiral Couplings of W’ and Top Quark Polarization at the LHC, Phys. Rev. D 82 (2010) 115020 [arXiv:1008.3508] [SPIRES].

    ADS  Google Scholar 

  32. T.G. Rizzo, The Determination of the Helicity of W’ Boson Couplings at the LHC, JHEP 05 (2007) 037 [arXiv:0704.0235] [SPIRES].

    Article  ADS  Google Scholar 

  33. M. Frank, A. Hayreter and I. Turan, Production and Decays of W R bosons at the LHC, Phys. Rev. D 83 (2011) 035001 [arXiv:1010.5809] [SPIRES].

    ADS  Google Scholar 

  34. Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D 71 (2005) 075009 [hep-ph/0412166] [SPIRES].

    ADS  Google Scholar 

  35. LEP, ALEPH, DELPHI, L3, OPAL collaboration, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavor Group, A Combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0312023 [SPIRES].

  36. J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  37. D0 collaboration, V.M. Abazov et al., Search for Quark-Electron Compositeness in e + e Production, D0-Note-4552-CONF (2004).

  38. D0 collaboration, V.M. Abazov et al., Search for pair production of first-generation leptoquarks in p pbar collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Lett. B 681 (2009) 224 [arXiv:0907.1048] [SPIRES].

    ADS  Google Scholar 

  39. D0 collaboration, V.M. Abazov et al., Search for pair production of second generation scalar leptoquarks, Phys. Lett. B 671 (2009) 224 [arXiv:0808.4023] [SPIRES].

    ADS  Google Scholar 

  40. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  41. T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  42. M. Drees and T. Han, Signals for double parton scattering at the Fermilab Tevatron, Phys. Rev. Lett. 77 (1996) 4142 [hep-ph/9605430] [SPIRES].

    Article  ADS  Google Scholar 

  43. L. Basso, A. Belyaev, S. Moretti and C.H. Shepherd-Themistocleous, Phenomenology of the minimal B-L extension of the Standard model: Z’ and neutrinos, Phys. Rev. D 80 (2009) 055030 [arXiv:0812.4313] [SPIRES].

    ADS  Google Scholar 

  44. P. Langacker and S. Uma Sankar, Bounds on the Mass of W(R) and the W(L)-W(R) Mixing Angle xi in General SU(2)-L × SU(2)-R × U(1) Models, Phys. Rev. D 40 (1989) 1569 [SPIRES].

    ADS  Google Scholar 

  45. A.J. Buras, K. Gemmler and G. Isidori, Quark flavour mixing with right-handed currents: an effective theory approach, Nucl. Phys. B 843 (2011) 107 [arXiv:1007.1993] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Spethmann.

Additional information

ArXiv ePrint: 1011.5918

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmaltz, M., Spethmann, C. Two simple W′ models for the early LHC. J. High Energ. Phys. 2011, 46 (2011). https://doi.org/10.1007/JHEP07(2011)046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)046

Keywords

Navigation