Skip to main content
Log in

Composite Higgs boson pair production at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The measurement of the trilinear and quartic Higgs self-couplings is necessary for the reconstruction of the Higgs potential. This way the Higgs mechanism as the origin of electroweak symmetry breaking can be tested. The couplings are accessible in multi-Higgs production processes at the LHC. In this paper we investigate the prospects of measuring the trilinear Higgs coupling in composite Higgs models. In these models, the Higgs boson emerges as a pseudo-Goldstone boson of a strongly interacting sector, and the Higgs potential is generated by loops of the Standard Model (SM) gauge bosons and fermions. The Higgs self-couplings are modified compared to the SM and controlled by the compositeness parameter ξ in addition to the Higgs boson mass. We construct areas of sensitivity to the trilinear Higgs coupling in the relevant parameter space for various final states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Goldstone, A. Salam and S. Weinberg, Broken symmetries, Phys. Rev. 127 (1962) 965 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967) 1264 [SPIRES].

    Article  ADS  Google Scholar 

  3. S.L. Glashow and S. Weinberg, Breaking chiral symmetry, Phys. Rev. Lett. 20 (1968) 224 [SPIRES].

    Article  ADS  Google Scholar 

  4. A. Salam, Weak and electromagnetic interactions, in the proceedings of the Nobel Symposium, Stockholm, Sweden (1968).

    Google Scholar 

  5. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [SPIRES].

    ADS  Google Scholar 

  6. P.W. Higgs, Spontaneous symmetry breakdown without massless bosons, Phys. Rev. 145 (1966) 1156 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [SPIRES].

    Article  ADS  Google Scholar 

  10. J.F.Gunion,H.E.Haber,G.Kaneand S.Dawson, T he Higgs hunter’s guide, Addison-Wesley, U.S.A. (1990).

  11. M. Gomez-Bock et al., Rompimiento de la simetria electrodebil y la fisica del Higgs: conceptos basicos, J. Phys. Conf. Ser. 18 (2005) 74 [hep-ph/0509077] [SPIRES].

    Article  ADS  Google Scholar 

  12. M. Gomez-Bock, M. Mondragon, M. Muhlleitner, M. Spira and P.M. Zerwas, Concepts of electroweak symmetry breaking and Higgs physics, arXiv:0712.2419 [SPIRES].

  13. A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [SPIRES].

    Article  ADS  Google Scholar 

  14. R. Contino, TASI 2009 lectures: the Higgs as a composite Nambu-Goldstone boson, arXiv:1005.4269 [SPIRES].

  15. G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [SPIRES].

    Article  ADS  Google Scholar 

  16. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [SPIRES].

    Article  ADS  Google Scholar 

  17. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [SPIRES].

    ADS  Google Scholar 

  18. S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys. B 199 (1982) 206 [SPIRES].

    Article  ADS  Google Scholar 

  19. T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nucl. Phys. B 243 (1984) 125 [SPIRES].

    ADS  Google Scholar 

  20. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [SPIRES].

    ADS  Google Scholar 

  21. H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [SPIRES].

    ADS  Google Scholar 

  22. H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [SPIRES].

    ADS  Google Scholar 

  23. M.J. Dugan, H. Georgi and D. B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [SPIRES].

    Article  ADS  Google Scholar 

  24. A. Falkowski, Pseudo-Goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [SPIRES].

    ADS  Google Scholar 

  25. J.R. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [SPIRES].

    Article  ADS  Google Scholar 

  26. C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [SPIRES].

    Article  ADS  Google Scholar 

  27. F. Sannino, Conformal dynamics for TeV physics and cosmology, Acta Phys. Polon. B 40 (2009) 3533 [arXiv:0911.0931] [SPIRES].

    Google Scholar 

  28. A. Djouadi and G. Moreau, Higgs production at the LHC in warped extra-dimensional models, Phys. Lett. B 660 (2008) 67 [arXiv:0707.3800] [SPIRES].

    ADS  Google Scholar 

  29. G. Bhattacharyya and T.S. Ray, Probing warped extra dimension via gg → h and h → γγ at LHC, Phys. Lett. B 675 (2009) 222 [arXiv:0902.1893] [SPIRES].

    ADS  Google Scholar 

  30. A. Azatov, M. Toharia and L. Zhu, Higgs production from gluon fusion in warped extra dimensions, Phys. Rev. D 82 (2010) 056004 [arXiv:1006.5939] [SPIRES].

    ADS  Google Scholar 

  31. I. Low and A. Vichi, On the production of a composite Higgs boson, arXiv:1010.2753 [SPIRES].

  32. E. Accomando, The process gg → WW as a probe into the EWSB mechanism, Phys. Lett. B 661 (2008) 129 [arXiv:0709.1364] [SPIRES].

    ADS  Google Scholar 

  33. A. Djouadi, W. Kilian, M. Muhlleitner and P.M. Zerwas, Production of neutral Higgs-boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [SPIRES].

    Article  ADS  Google Scholar 

  34. A. Djouadi, W. Kilian, M. Muhlleitner and P.M. Zerwas, The reconstruction of trilinear Higgs couplings, hep-ph/0001169 [SPIRES].

  35. M.M. Muhlleitner, Higgs particles in the standard model and supersymmetric theories, hep-ph/0008127 [SPIRES].

  36. M.M. Muhlleitner, Testing Higgs self-couplings at high-energy linear colliders, hep-ph/0101262 [SPIRES]

  37. S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs-boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [SPIRES].

    ADS  Google Scholar 

  38. F. Gianotti et al., Physics potential and experimental challenges of the LHC luminosity upgrade, Eur. Phys. J. C 39 (2005) 293 [hep-ph/0204087] [SPIRES].

    Article  ADS  Google Scholar 

  39. A. Blondel, A. Clark and F. Mazzucato, Studies on the measurement of the SM Higgs self-couplings, ATL-PHYS-2002-029 (2009).

  40. Higgs Working Group collaboration, K.A. Assamagan et al., T he Higgs working group: summary report 2003, hep-ph/0406152 [SPIRES].

  41. U. Baur, T. Plehn and D.L. Rainwater, Measuring the Higgs boson self coupling at the LHC and finite top mass matrix elements, Phys. Rev. Lett. 89 (2002) 151801 [hep-ph/0206024] [SPIRES].

    Article  ADS  Google Scholar 

  42. U. Baur, T. Plehn and D.L. Rainwater, Determining the Higgs boson selfcoupling at hadron colliders, Phys. Rev. D 67 (2003) 033003 [hep-ph/0211224] [SPIRES].

    ADS  Google Scholar 

  43. U. Baur, T. Plehn and D.L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: A comparative analysis, Phys. Rev. D 68 (2003) 033001 [hep-ph/0304015] [SPIRES].

    ADS  Google Scholar 

  44. U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [SPIRES].

    ADS  Google Scholar 

  45. V. Barger, T. Han, P. Langacker, B. McElrath and P. Zerwas, Effects of genuine dimension-six Higgs operators, Phys. Rev. D 67 (2003) 115001 [hep-ph/0301097] [SPIRES].

    ADS  Google Scholar 

  46. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].

    Article  ADS  Google Scholar 

  47. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].

    Article  ADS  Google Scholar 

  48. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [SPIRES].

    ADS  Google Scholar 

  49. J.J. van der Bij, Limits on a strongly interacting Higgs sector, arXiv:1004.1713 [SPIRES].

  50. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].

    ADS  Google Scholar 

  51. R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [SPIRES].

    ADS  Google Scholar 

  52. K. Agashe and R. Contino, The minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [SPIRES].

    Article  ADS  Google Scholar 

  53. V. D. Barger, T. Han and R. J. N. Phillips, Double Higgs boson bremsstrahlung from W and Z bosons at supercolliders, Phys. Rev. D 38 (1988) 2766 [SPIRES].

    ADS  Google Scholar 

  54. A. Dobrovolskaya and V. Novikov, On heavy Higgs boson production, Z. Phys. C 52 (1991) 427 [SPIRES].

    ADS  Google Scholar 

  55. D. A. Dicus, K. J. Kallianpur and S. S. D. Willenbrock, Higgs boson pair production in the effective W approximation, Phys. Lett. B 200 (1988) 187 [SPIRES].

    ADS  Google Scholar 

  56. A. Abbasabadi, W.W. Repko, D.A. Dicus and R. Vega, Comparison of exact and effective gauge boson calculations for gauge boson fusion processes, Phys. Rev. D 38 (1988) 2770 [SPIRES].

    ADS  Google Scholar 

  57. A. Abbasabadi, W.W. Repko, D.A. Dicus and R. Vega, Single and double Higgs production by gauge boson fusion, Phys. Lett. B 213 (1988) 386 [SPIRES].

    ADS  Google Scholar 

  58. E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [SPIRES].

    Article  ADS  Google Scholar 

  59. A. Djouadi, W. Kilian, M. Muhlleitner and P.M. Zerwas, Testing Higgs self-couplings at e + e linear colliders, Eur. Phys. J. C 10 (1999) 27 [hep-ph/9903229] [SPIRES].

    ADS  Google Scholar 

  60. T. Plehn, M. Spira and P. M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [SPIRES].

    Article  ADS  Google Scholar 

  61. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  62. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].

    Article  ADS  Google Scholar 

  63. M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, SUSY Higgs production at proton colliders, Phys. Lett. B 318 (1993) 347 [SPIRES].

    ADS  Google Scholar 

  64. M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [SPIRES].

    Article  ADS  Google Scholar 

  65. D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [SPIRES].

    Article  ADS  Google Scholar 

  66. S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [SPIRES].

    Article  ADS  Google Scholar 

  67. A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [SPIRES].

    ADS  Google Scholar 

  68. R.P. Kauffman and W. Schaffer, QCD corrections to production of Higgs pseudoscalars, Phys. Rev. D 49 (1994) 551 [hep-ph/9305279] [SPIRES].

    ADS  Google Scholar 

  69. S. Dawson and R. Kauffman, QCD corrections to Higgs boson production: nonleading terms in the heavy quark limit, Phys. Rev. D 49 (1994) 2298 [hep-ph/9310281] [SPIRES].

    ADS  Google Scholar 

  70. M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [SPIRES].

    Article  ADS  Google Scholar 

  71. M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  72. T. Han, G. Valencia and S. Willenbrock, Structure function approach to vector boson scattering in pp collisions, Phys. Rev. Lett. 69 (1992) 3274 [hep-ph/9206246] [SPIRES].

    Article  ADS  Google Scholar 

  73. T. Han and S. Willenbrock, QCD correction to the ppW H and Z H total cross-sections, Phys. Lett. B 273 (1991) 167 [SPIRES].

    ADS  Google Scholar 

  74. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  75. J.M. Butterworth et al., The tools and Monte Carlo working group summary report, arXiv:1003.1643 [SPIRES].

  76. A. Djouadi, M.M. Muhlleitner and M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [SPIRES].

    ADS  Google Scholar 

  77. S. Bock et al., Measuring hidden Higgs and strongly-interacting Higgs scenarios, Phys. Lett. B 694 (2010) 44 [arXiv:1007.2645] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mühlleitner.

Additional information

ArXiv ePrint:1012.1562

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gröber, R., Mühlleitner, M. Composite Higgs boson pair production at the LHC. J. High Energ. Phys. 2011, 20 (2011). https://doi.org/10.1007/JHEP06(2011)020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)020

Keywords

Navigation