Skip to main content
Log in

Searches for long lived neutral particles

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

An intriguing possibility for TeV scale physics is the existence of neutral long lived particles (LOLIPs) that subsequently decay into SM states. Such particles are many cases indistinguishable from missing transverse energy (MET) at colliders. We propose new methods to search for these particles using neutrino telescopes. We study their detection prospects, assuming production either at the LHC or through dark matter (DM) annihilations in the Sun and the Earth. We find that the sensitivity for LOLIPs produced at the LHC is limited by luminosity and detection energy thresholds. On the other hand, in the case of DM annihilation into LOLIPs, the sensitivity of neutrino telescopes is promising and may extend beyond the reach of upcoming direct detection experiments. In the context of low scale hidden sectors weakly coupled to the SM, such indirect searches allow to probe couplings as small as 10−15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [SPIRES].

    ADS  Google Scholar 

  2. J. Kang and M.A. Luty, Macroscopic strings and ‘quirks’ at colliders, JHEP 11 (2009) 065 [arXiv:0805.4642] [SPIRES].

    Article  ADS  Google Scholar 

  3. C. Jacoby and S. Nussinov, The relic abundance of massive colored particles after a late hadronic annihilation stage, arXiv:0712.2681 [SPIRES].

  4. S. Nussinov and C. Jacoby, Some comments on the ‘quirks’ scenario, arXiv:0907.4932 [SPIRES].

  5. PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5.100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [SPIRES].

    Article  ADS  Google Scholar 

  6. TheFermi LAT collaboration, A.A. Abdo et al., Measurement of the cosmic ray e + plus e spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102 (2009) 181101 [arXiv:0905.0025] [SPIRES].

    Article  ADS  Google Scholar 

  7. P. Meade, M. Papucci and T. Volansky, Dark matter sees the light, JHEP 12 (2009) 052 [arXiv:0901.2925] [SPIRES].

    Article  ADS  Google Scholar 

  8. P. Meade, M. Papucci, A. Strumia and T. Volansky, Dark matter interpretations of the electron/positron excesses after FERMI, Nucl. Phys. B 831 (2010) 178 [arXiv:0905.0480] [SPIRES].

    Article  ADS  Google Scholar 

  9. N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [SPIRES].

    ADS  Google Scholar 

  10. M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [SPIRES].

    ADS  Google Scholar 

  11. N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [SPIRES].

    Article  ADS  Google Scholar 

  12. T. Han, Z. Si, K.M. Zurek and M.J. Strassler, Phenomenology of hidden valleys at hadron colliders, JHEP 07 (2008) 008 [arXiv:0712.2041] [SPIRES].

    Article  ADS  Google Scholar 

  13. J.L. Feng and B.T. Smith, Slepton trapping at the Large Hadron and International Linear Colliders, Phys. Rev. D 71 (2005) 015004 [hep-ph/0409278] [SPIRES].

    ADS  Google Scholar 

  14. R. Essig, P. Schuster and N. Toro, Probing dark forces and light hidden sectors at low-energy e + e colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [SPIRES].

    ADS  Google Scholar 

  15. M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07 (2009) 051 [arXiv:0904.1743] [SPIRES].

    Article  ADS  Google Scholar 

  16. BABAR collaboration, B. Aubert et al., Search for a narrow resonance in e + e to four lepton final states, arXiv:0908.2821 [SPIRES].

  17. J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [SPIRES].

    ADS  Google Scholar 

  18. B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [SPIRES].

    ADS  Google Scholar 

  19. J.T. Ruderman and T. Volansky, Searching for smoking gun signatures of decaying dark matter, arXiv:0907.4373 [SPIRES].

  20. J.T. Ruderman and T. Volansky, Decaying into the hidden sector, JHEP 02 (2010) 024 [arXiv:0908.1570] [SPIRES].

    Article  Google Scholar 

  21. R.W. Atkins et al., Search for very high energy gamma rays from WIMP annihilations near the Sun with the Milagro detector, Phys. Rev. D 70 (2004) 083516 [SPIRES].

    ADS  Google Scholar 

  22. Super-Kamiokande collaboration, S. Desai et al., Search for dark matter WIMPs using upward through-going muons in Super-Kamiokande, Phys. Rev. D 70 (2004) 083523 [Erratum ibid. D 70 (2004) 109901] [hep-ex/0404025] [SPIRES].

    ADS  Google Scholar 

  23. P. Meade, M. Papucci, M. Strassler and T. Volansky, work in progress.

  24. I. Albuquerque, G. Burdman and Z. Chacko, Neutrino telescopes as a direct probe of supersymmetry breaking, Phys. Rev. Lett. 92 (2004) 221802 [hep-ph/0312197] [SPIRES].

    Article  ADS  Google Scholar 

  25. M. Ahlers, J. Kersten and A. Ringwald, Long-lived staus at neutrino telescopes, JCAP 07 (2006) 005 [hep-ph/0604188] [SPIRES].

    ADS  Google Scholar 

  26. M.H. Reno, I. Sarcevic and J. Uscinski, Cosmogenic neutrinos and quasi-stable supersymmetric particle production, Phys. Rev. D 76 (2007) 125030 [arXiv:0710.4954] [SPIRES].

    ADS  Google Scholar 

  27. H.K. Dreiner, An introduction to explicit R-parity violation, hep-ph/9707435 [SPIRES].

  28. B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79 (2009) 115008 [arXiv:0903.0363] [SPIRES].

    ADS  Google Scholar 

  29. CDMS collaboration, Z. Ahmed et al., Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the Soudan Underground Laboratory, Phys. Rev. Lett. 102 (2009) 011301 [arXiv:0802.3530] [SPIRES].

    Article  ADS  Google Scholar 

  30. XENON collaboration, J. Angle et al., First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [SPIRES].

    Article  ADS  Google Scholar 

  31. The IceCube collaboration, J. Ahrens et al., IceCube: the next generation neutrino telescope at the South Pole, Nucl. Phys. Proc. Suppl. 118 (2003) 388 [astro-ph/0209556] [SPIRES].

    Article  Google Scholar 

  32. ANTARES collaboration, http://antares.in2p3.fr/Publications/index.html.

  33. KM3NeT collaboration, The KM3NeT conceptual design report, http://www.km3net.org/CDR/CDR-KM3NeT.pdf.

  34. Super-Kamiokande collaboration, S. Desai et al., Study of TeV Neutrinos with upward showering muons in Super-Kamiokande, Astropart. Phys. 29 (2008) 42 [arXiv:0711.0053] [SPIRES].

    ADS  Google Scholar 

  35. M.C. Gonzalez-Garcia, F. Halzen and M. Maltoni, Physics reach of high-energy and high-statistics IceCube atmospheric neutrino data, Phys. Rev. D 71 (2005) 093010 [hep-ph/0502223] [SPIRES].

    ADS  Google Scholar 

  36. C. Wiebusch and f.t.I. Collaboration, Physics capabilities of the IceCube DeepCore detector, arXiv:0907.2263 [SPIRES].

  37. MINOS collaboration, http://www-numi.fnal.gov/PublicInfo/forscientists.html.

  38. M.L. Mangano, The super-LHC, arXiv:0910.0030 [SPIRES].

  39. A. Gould, Resonant enhancements in WIMP capture by the Earth, Astrophys. J. 321 (1987) 571 [SPIRES].

    Article  ADS  Google Scholar 

  40. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].

    Article  ADS  Google Scholar 

  41. K. Griest and D. Seckel, Cosmic asymmetry, neutrinos and the Sun, Nucl. Phys. B 283 (1987) 681 [Erratum ibid. B 296 (1988) 1034] [SPIRES].

    Article  ADS  Google Scholar 

  42. D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [SPIRES].

    ADS  Google Scholar 

  43. Y. Bai and P.J. Fox, Resonant dark matter, JHEP 11 (2009) 052 [arXiv:0909.2900] [SPIRES].

    Article  ADS  Google Scholar 

  44. B. Feldstein, A.L. Fitzpatrick and E. Katz, Form factor dark matter, JCAP 01 (2010) 020 [arXiv:0908.2991] [SPIRES].

    ADS  Google Scholar 

  45. S. Chang, A. Pierce and N. Weiner, Momentum dependent dark matter scattering, JCAP 01 (2010) 006 [arXiv:0908.3192] [SPIRES].

    ADS  Google Scholar 

  46. S. Nussinov, L.-T. Wang and I. Yavin, Capture of inelastic dark matter in the Sun, JCAP 08 (2009) 037 [arXiv:0905.1333] [SPIRES].

    ADS  Google Scholar 

  47. A. Menon, R. Morris, A. Pierce and N. Weiner, Capture and indirect detection of inelastic dark matter, arXiv:0905.1847 [SPIRES].

  48. N. Giglietto, Sources in the solar system observed by the Fermi Large Area Telescope, talk given at TeV Particle Astrophysics 2009, July 13–17, SLAC, Stanford, U.S.A. (2009).

  49. M. Honda, T. Kajita, K. Kasahara, S. Midorikawa and T. Sanuki, Calculation of atmospheric neutrino ux using the interaction model calibrated with atmospheric muon data, Phys. Rev. D 75 (2007) 043006 [astro-ph/0611418] [SPIRES].

    ADS  Google Scholar 

  50. J. Hisano, K. Nakayama and M.J.S. Yang, Upward muon signals at neutrino detectors as a probe of dark matter properties, Phys. Lett. B 678 (2009) 101 [arXiv:0905.2075] [SPIRES].

    ADS  Google Scholar 

  51. IceCube collaboration, J. Ahrens et al., IceCube preliminary design document, http://www.icecube.wisc.edu/science/publications/pdd/pdd.pdf.

  52. C. Delaunay, P.J. Fox and G. Perez, Probing dark matter dynamics via earthborn neutrinos at IceCube, JHEP 05 (2009) 099 [arXiv:0812.3331] [SPIRES].

    Article  ADS  Google Scholar 

  53. B. Batell, M. Pospelov, A. Ritz and Y. Shang, Solar gamma rays powered by secluded dark matter, Phys. Rev. D 81 (2010) 075004 [arXiv:0910.1567] [SPIRES].

    ADS  Google Scholar 

  54. P. Schuster, N. Toro and I. Yavin, Terrestrial and solar limits on long-lived particles in a dark sector, Phys. Rev. D 81 (2010) 016002 [arXiv:0910.1602] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomer Volansky.

Additional information

ArXiv ePrint: 0910.4160

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meade, P., Nussinov, S., Papucci, M. et al. Searches for long lived neutral particles. J. High Energ. Phys. 2010, 29 (2010). https://doi.org/10.1007/JHEP06(2010)029

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2010)029

Keywords

Navigation