Skip to main content
Log in

Carving out the space of 4D CFTs

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We introduce a new numerical algorithm based on semidefinite programming to efficiently compute bounds on operator dimensions, central charges, and OPE coefficients in 4D conformal and \( \mathcal{N} = 1 \) superconformal field theories. Using our algorithm, we dramatically improve previous bounds on a number of CFT quantities, particularly for theories with global symmetries. In the case of SO(4) or SU(2) symmetry, our bounds severely constrain models of conformal technicolor. In \( \mathcal{N} = 1 \) superconformal theories, we place strong bounds on dim(ΦΦ), where Φ is a chiral operator. These bounds asymptote to the line dim(ΦΦ) ≤ 2 dim(Φ) near dim(Φ) ≃ 1, forbidding positive anomalous dimensions in this region. We also place novel upper and lower bounds on OPE coefficients of protected operators in the Φ × Φ OPE. Finally, we find examples of lower bounds on central charges and flavor current two-point functions that scale with the size of global symmetry representations. In the case of \( \mathcal{N} = 1 \) theories with an SU(N) flavor symmetry, our bounds on current two-point functions lie within an O(1) factor of the values realized in supersymmetric QCD in the conformal window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Holdom, Techniodor, Phys. Lett. B 150 (1985) 301 [INSPIRE].

    ADS  Google Scholar 

  2. T. Akiba and T. Yanagida, Hierarchic chiral condensate, Phys. Lett. B 169 (1986) 432 [INSPIRE].

    ADS  Google Scholar 

  3. T.W. Appelquist, D. Karabali and L. Wijewardhana, Chiral hierarchies and the flavor changing neutral current problem in technicolor, Phys. Rev. Lett. 57 (1986) 957 [INSPIRE].

    Article  ADS  Google Scholar 

  4. K. Yamawaki, M. Bando and K.-i. Matumoto, Scale invariant technicolor model and a technidilaton, Phys. Rev. Lett. 56 (1986) 1335 [INSPIRE].

    Article  ADS  Google Scholar 

  5. T. Appelquist and L. Wijewardhana, Chiral hierarchies and chiral perturbations in technicolor, Phys. Rev. D 35 (1987) 774 [INSPIRE].

    ADS  Google Scholar 

  6. T. Appelquist and L. Wijewardhana, Chiral hierarchies from slowly running couplings in technicolor theories, Phys. Rev. D 36 (1987) 568 [INSPIRE].

    ADS  Google Scholar 

  7. M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M.A. Luty, Strong conformal dynamics at the LHC and on the lattice, JHEP 04 (2009) 050 [arXiv:0806.1235] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. Galloway, J.A. Evans, M.A. Luty and R.A. Tacchi, Minimal conformal technicolor and precision electroweak tests, JHEP 10 (2010) 086 [arXiv:1001.1361] [INSPIRE].

    Google Scholar 

  10. J.A. Evans, J. Galloway, M.A. Luty and R.A. Tacchi, Flavor in minimal conformal technicolor, JHEP 04 (2011) 003 [arXiv:1012.4808] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Azatov, J. Galloway and M.A. Luty, Superconformal technicolor, Phys. Rev. Lett. 108 (2012) 041802 [arXiv:1106.3346] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Azatov, J. Galloway and M.A. Luty, Superconformal technicolor: models and phenomenology, Phys. Rev. D 85 (2012) 015018 [arXiv:1106.4815] [INSPIRE].

    ADS  Google Scholar 

  13. H. Georgi, A.E. Nelson and A. Manohar, On the proposition that all fermions are created equal, Phys. Lett. B 126 (1983) 169 [INSPIRE].

    ADS  Google Scholar 

  14. A.E. Nelson and M.J. Strassler, Suppressing flavor anarchy, JHEP 09 (2000) 030 [hep-ph/0006251] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D. Poland and D. Simmons-Duffin, Superconformal flavor simplified, JHEP 05 (2010) 079 [arXiv:0910.4585] [INSPIRE].

    Article  ADS  Google Scholar 

  16. N. Craig, Simple models of superconformal flavor, arXiv:1004.4218 [INSPIRE].

  17. T. Kobayashi and H. Terao, Sfermion masses in Nelson-Strassler type of models: SUSY standard models coupled with SCFTs, Phys. Rev. D 64 (2001) 075003 [hep-ph/0103028] [INSPIRE].

    ADS  Google Scholar 

  18. A.E. Nelson and M.J. Strassler, Exact results for supersymmetric renormalization and the supersymmetric flavor problem, JHEP 07 (2002) 021 [hep-ph/0104051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. M.A. Luty and R. Sundrum, Supersymmetry breaking and composite extra dimensions, Phys. Rev. D 65 (2002) 066004 [hep-th/0105137] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. M. Luty and R. Sundrum, Anomaly mediated supersymmetry breaking in four-dimensions, naturally, Phys. Rev. D 67 (2003) 045007 [hep-th/0111231] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. T. Kobayashi, H. Nakano, T. Noguchi and H. Terao, Sfermion mass degeneracy, superconformal dynamics and supersymmetric grand unified theories, Phys. Rev. D 66 (2002) 095011 [hep-ph/0202023] [INSPIRE].

    ADS  Google Scholar 

  22. M. Dine, P. Fox, E. Gorbatov, Y. Shadmi, Y. Shirman, et al., Visible effects of the hidden sector, Phys. Rev. D 70 (2004) 045023 [hep-ph/0405159] [INSPIRE].

    ADS  Google Scholar 

  23. R. Sundrum, ‘Gaugomalymediated SUSY breaking and conformal sequestering, Phys. Rev. D 71 (2005) 085003 [hep-th/0406012] [INSPIRE].

    ADS  Google Scholar 

  24. M. Ibe, K.-I. Izawa, Y. Nakayama, Y. Shinbara and T. Yanagida, Conformally sequestered SUSY breaking in vector-like gauge theories, Phys. Rev. D 73 (2006) 015004 [hep-ph/0506023] [INSPIRE].

    ADS  Google Scholar 

  25. M. Ibe, K.-I. Izawa, Y. Nakayama, Y. Shinbara and T. Yanagida, More on conformally sequestered SUSY breaking, Phys. Rev. D 73 (2006) 035012 [hep-ph/0509229] [INSPIRE].

    ADS  Google Scholar 

  26. M. Schmaltz and R. Sundrum, Conformal sequestering simplified, JHEP 11 (2006) 011 [hep-th/0608051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. S. Kachru, L. McAllister and R. Sundrum, Sequestering in string theory, JHEP 10 (2007) 013 [hep-th/0703105] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. O. Aharony, L. Berdichevsky, M. Berkooz, Y. Hochberg and D. Robles-Llana, Inverted sparticle hierarchies from natural particle hierarchies, Phys. Rev. D 81 (2010) 085006 [arXiv:1001.0637] [INSPIRE].

    ADS  Google Scholar 

  29. T. Kobayashi, Y. Nakai and R. Takahashi, Revisiting superparticle spectra in superconformal flavor models, JHEP 09 (2010) 093 [arXiv:1006.4042] [INSPIRE].

    Article  ADS  Google Scholar 

  30. E. Dudas, G. von Gersdorff, J. Parmentier and S. Pokorski, Flavour in supersymmetry: horizontal symmetries or wave function renormalisation, JHEP 12 (2010) 015 [arXiv:1007.5208] [INSPIRE].

    Article  ADS  Google Scholar 

  31. T.S. Roy and M. Schmaltz, Hidden solution to the μ/Bμ problem in gauge mediation, Phys. Rev. D 77 (2008) 095008 [arXiv:0708.3593] [INSPIRE].

    ADS  Google Scholar 

  32. H. Murayama, Y. Nomura and D. Poland, More visible effects of the hidden sector, Phys. Rev. D 77 (2008) 015005 [arXiv:0709.0775] [INSPIRE].

    ADS  Google Scholar 

  33. G. Perez, T.S. Roy and M. Schmaltz, Phenomenology of SUSY with scalar sequestering, Phys. Rev. D 79 (2009) 095016 [arXiv:0811.3206] [INSPIRE].

    ADS  Google Scholar 

  34. H.D. Kim and J.-H. Kim, Higgs phenomenology of scalar sequestering, JHEP 05 (2009) 040 [arXiv:0903.0025] [INSPIRE].

    Article  Google Scholar 

  35. N.J. Craig and D. Green, On the phenomenology of strongly coupled hidden sectors, JHEP 09 (2009) 113 [arXiv:0905.4088] [INSPIRE].

    Article  ADS  Google Scholar 

  36. K. Hanaki and Y. Ookouchi, Light gauginos and conformal sequestering, Phys. Rev. D 83 (2011) 125010 [arXiv:1003.5663] [INSPIRE].

    ADS  Google Scholar 

  37. D. Baumann and D. Green, Desensitizing inflation from the Planck scale, JHEP 09 (2010) 057 [arXiv:1004.3801] [INSPIRE].

    Article  ADS  Google Scholar 

  38. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  39. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  41. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective conformal theory and the flat-space limit of AdS, JHEP 07 (2011) 023 [arXiv:1007.2412] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. A.M. Polyakov, Conformal symmetry of critical fluctuations, JETP Lett. 12 (1970) 381 [INSPIRE].

    ADS  Google Scholar 

  46. H. Osborn and A. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. S. Ferrara, R. Gatto and A. Grillo, Positivity restrictions on anomalous dimensions, Phys. Rev. D 9 (1974) 3564 [INSPIRE].

    ADS  Google Scholar 

  48. G. Mack, All unitary ray representations of the conformal group SU(2, 2) with positive energy, Commun. Math. Phys. 55 (1977) 1 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4d CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. V.S. Rychkov and A. Vichi, Universal constraints on conformal operator dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. F. Caracciolo and V.S. Rychkov, Rigorous limits on the interaction strength in quantum field theory, Phys. Rev. D 81 (2010) 085037 [arXiv:0912.2726] [INSPIRE].

    ADS  Google Scholar 

  52. D. Poland and D. Simmons-Duffin, Bounds on 4d conformal and superconformal field theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. R. Rattazzi, S. Rychkov and A. Vichi, Central charge bounds in 4d conformal field theory, Phys. Rev. D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE].

    ADS  Google Scholar 

  54. R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4d conformal field theories with global symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. A. Vichi, Improved bounds for CFT’s with global symmetries, JHEP 01 (2012) 162 [arXiv:1106.4037] [INSPIRE].

    Article  ADS  Google Scholar 

  56. A.L. Fitzpatrick and D. Shih, Anomalous dimensions of non-chiral operators from AdS/CFT, JHEP 10 (2011) 113 [arXiv:1104.5013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. N. Seiberg, Electric-magnetic duality in supersymmetric nonabelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. S. Ferrara, R. Gatto and A. Grillo, Conformal invariance on the light cone and canonical dimensions, Nucl. Phys. B 34 (1971) 349 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. F. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. F. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. J.-F. Fortin, K. Intriligator and A. Stergiou, Current OPEs in superconformal theories, JHEP 09 (2011) 071 [arXiv:1107.1721] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev. 38 (1996) 49.

    Article  MathSciNet  MATH  Google Scholar 

  63. P. Parrilo, Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization, Ph.D. Thesis, California Institute of Technology, Los Angeles U.S.A. (2000) [http://resolver.caltech.edu/CaltechETD:etd-05062004-055516].

  64. D. Hilbert, Über die Darstellung definiter Formen als Summe von Formenquadraten Math. Ann. 32 (1888) 342.

    Article  MathSciNet  MATH  Google Scholar 

  65. S. Rychkov, Is conformal technicolor plausible?, talk given at Planck 2011 [http://indico.cern.ch/getFile.py/access?contribId=128&resId=0&materialId=slides&confId=112851].

  66. G. Isidori, Y. Nir and G. Perez, Flavor physics constraints for physics beyond the standard model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].

    Article  ADS  Google Scholar 

  67. D. Green and D. Shih, Bounds on SCFTs from conformal perturbation theory, arXiv:1203.5129 [INSPIRE].

  68. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. D. Anselmi, D. Freedman, M.T. Grisaru and A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. D. Anselmi, J. Erlich, D. Freedman and A. Johansen, Positivity constraints on anomalies in supersymmetric gauge theories, Phys. Rev. D 57 (1998) 7570 [hep-th/9711035] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  71. K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. D. Poland, D. Simmons-Duffin and A. Vichi, Bounds on SQCD, to appear.

  73. N. Beisert, C. Ahn, L.F. Alday, Z. Bajnok, J.M. Drummond, et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  74. D. Poland and D. Simmons-Duffin, N = 1 SQCD and the transverse field Ising model, JHEP 02 (2012) 009 [arXiv:1104.1425] [INSPIRE].

    Article  ADS  Google Scholar 

  75. M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  76. M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal blocks, JHEP 11 (2011) 154 [arXiv:1109.6321] [INSPIRE].

    Article  ADS  Google Scholar 

  77. D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].

    Article  ADS  Google Scholar 

  78. F. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE].

  79. S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, et al., Solving the 3D Ising model with the conformal bootstrap, arXiv:1203.6064 [INSPIRE].

  80. G. Mack, D-independent representation of conformal field theories in D dimensions via transformation to auxiliary dual resonance models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].

  81. J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  82. A.L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A natural language for AdS/CFT correlators, JHEP 11 (2011) 095 [arXiv:1107.1499] [INSPIRE].

    Article  ADS  Google Scholar 

  83. http://sdpa.sourceforge.net/http://sdpa.sourceforge.net/ SDPA project, SDPA official page, http://sdpa.sourceforge.net/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Poland.

Additional information

ArXiv ePrint: 1109.5176

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poland, D., Simmons-Duffin, D. & Vichi, A. Carving out the space of 4D CFTs. J. High Energ. Phys. 2012, 110 (2012). https://doi.org/10.1007/JHEP05(2012)110

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2012)110

Keywords

Navigation