Skip to main content
Log in

Dirichlet Higgs as radion stabilizer in warped compactification

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study implications of generalized non-zero Dirichlet boundary condition along with the ordinary Neumann one on a bulk scalar in the Randall-Sundrum warped compactification. First we show profiles of vacuum expectation value of the scalar under the general boundary conditions. We also investigate Goldberger-Wise mechanism in several setups with the general boundary conditions of the bulk scalar field and find that the mechanism can work under non-zero Dirichlet boundary conditions with appropriate vacuum expectation values. Especially, we show that SU(2) R triplet Higgs in the bulk left-right symmetric model with custodial symmetry can be identified with the Goldberger-Wise scalar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Fairlie, Higgs’ Fields and the Determination of the Weinberg Angle, Phys. Lett. B 82 (1979) 97 [SPIRES].

    ADS  Google Scholar 

  2. D.B. Fairlie, Two Consistent Calculations Of The Weinberg Angle, J. Phys. G 5 (1979) L55 [SPIRES].

    ADS  Google Scholar 

  3. N.S. Manton, A New Six-Dimensional Approach to the Weinberg-Salam Model, Nucl. Phys. B 158 (1979) 141 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. Y. Hosotani, Dynamical Mass Generation by Compact Extra Dimensions, Phys. Lett. B 126 (1983) 309 [SPIRES].

    ADS  Google Scholar 

  5. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: Unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [SPIRES].

    ADS  Google Scholar 

  7. N. Haba, K.-y. Oda and R. Takahashi, Dirichlet Higgs in extra-dimension, consistent with electroweak data, arXiv:0910.3356 [SPIRES].

  8. M. Serone, The Higgs boson as a gauge field in extra dimensions, AIP Conf. Proc. 794 (2005) 139 [hep-ph/0508019] [SPIRES].

    Article  ADS  Google Scholar 

  9. M. Serone, Holographic Methods and Gauge-Higgs Unification in Flat Extra Dimensions, New J. Phys. 12 (2010) 075013 [arXiv:0909.5619] [SPIRES].

    Article  ADS  Google Scholar 

  10. M. Schmaltz and D. Tucker-Smith, Little Higgs Review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [SPIRES].

    Article  ADS  Google Scholar 

  11. M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007) 247 [hep-ph/0512128] [SPIRES].

    Article  ADS  Google Scholar 

  12. C. Csáki, J. Hubisz and P. Meade, Electroweak symmetry breaking from extra dimensions, hep-ph/0510275 [SPIRES].

  13. E.H. Simmons, R.S. Chivukula, H.J. He, M. Kurachi and M. Tanabashi, Higgsless models: Lessons from deconstruction, AIP Conf. Proc. 857 (2006) 34 [hep-ph/0606019] [SPIRES].

    Article  ADS  Google Scholar 

  14. N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].

    ADS  Google Scholar 

  15. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [SPIRES].

    ADS  Google Scholar 

  16. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. I. Antoniadis, A Possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [SPIRES].

    ADS  Google Scholar 

  19. Y. Hosotani, K. Oda, T. Ohnuma and Y. Sakamura, Dynamical Electroweak Symmetry Breaking in SO(5) × U(1) Gauge-Higgs Unification with Top and Bottom Quarks, Phys. Rev. D 78 (2008) 096002 [arXiv:0806.0480] [SPIRES].

    ADS  Google Scholar 

  20. Y. Hosotani and Y. Kobayashi, Yukawa Couplings and Effective Interactions in Gauge-Higgs Unification, Phys. Lett. B 674 (2009) 192 [arXiv:0812.4782] [SPIRES].

    ADS  Google Scholar 

  21. N. Haba, K.-y. Oda and R. Takahashi, Top Yukawa Deviation in Extra Dimension, Nucl. Phys. B 821 (2009) 74 [Erratum ibid 824 (2010) 331] [arXiv:0904.3813] [SPIRES].

    Article  ADS  Google Scholar 

  22. N. Haba, K.-y. Oda and R. Takahashi, Diagonal Kaluza-Klein expansion under brane localized potential, Acta Phys. Polon. B 41 (2010) 1291 [arXiv:0910.4528] [SPIRES].

    Google Scholar 

  23. N. Haba, K.-y. Oda and R. Takahashi, Phenomenological Aspects of Dirichlet Higgs Model from Extra-Dimension, JHEP 07 (2010) 079 [arXiv:1005.2306] [SPIRES].

    Article  ADS  Google Scholar 

  24. K. Nishiwaki and K.-y. Oda, Unitarity in Dirichlet Higgs Model, arXiv:1011.0405 [SPIRES].

  25. M. Holthausen and R. Takahashi, GIMPs from Extra Dimensions, Phys. Lett. B 691 (2010) 56 [arXiv:0912.2262] [SPIRES].

    ADS  Google Scholar 

  26. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].

    Article  ADS  Google Scholar 

  27. S. Chang, J. Hisano, H. Nakano, N. Okada and M. Yamaguchi, Bulk standard model in the Randall-Sundrum background, Phys. Rev. D 62 (2000) 084025 [hep-ph/9912498] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].

    Article  ADS  Google Scholar 

  29. D.C. Kennedy and B.W. Lynn, Electroweak Radiative Corrections with an Effective Lagrangian: Four Fermion Processes, Nucl. Phys. B 322 (1989) 1 [SPIRES].

    Article  ADS  Google Scholar 

  30. M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [SPIRES].

    Article  ADS  Google Scholar 

  31. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].

    ADS  Google Scholar 

  32. C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [SPIRES].

    ADS  Google Scholar 

  33. P. Nath and M. Yamaguchi, Effects of Extra Space-time Dimensions on the Fermi Constant, Phys. Rev. D 60 (1999) 116004 [hep-ph/9902323] [SPIRES].

    ADS  Google Scholar 

  34. M. Masip and A. Pomarol, Effects of SM Kaluza-Klein excitations on electroweak observables, Phys. Rev. D 60 (1999) 096005 [hep-ph/9902467] [SPIRES].

    ADS  Google Scholar 

  35. T.G. Rizzo and J.D. Wells, Electroweak precision measurements and collider probes of the Standard Model with large extra dimensions, Phys. Rev. D 61 (2000) 016007 [hep-ph/9906234] [SPIRES].

    ADS  Google Scholar 

  36. A. Strumia, Bounds on Kaluza-Klein excitations of the SM vector bosons from electroweak tests, Phys. Lett. B 466 (1999) 107 [hep-ph/9906266] [SPIRES].

    ADS  Google Scholar 

  37. C.D. Carone, Electroweak constraints on extended models with extra dimensions, Phys. Rev. D 61 (2000) 015008 [hep-ph/9907362] [SPIRES].

    ADS  Google Scholar 

  38. C.D. Carone, Gauge unification in nonminimal models with extra dimensions, Phys. Lett. B 454 (1999) 70 [hep-ph/9902407] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. A. Delgado and M. Quirós, Strong coupling unification and extra dimensions, Nucl. Phys. B 559 (1999) 235 [hep-ph/9903400] [SPIRES].

    Article  ADS  Google Scholar 

  40. T. Appelquist and H.-U. Yee, Universal extra dimensions and the Higgs boson mass, Phys. Rev. D 67 (2003) 055002 [hep-ph/0211023] [SPIRES].

    ADS  Google Scholar 

  41. I. Gogoladze and C. Macesanu, Precision electroweak constraints on Universal Extra Dimensions revisited, Phys. Rev. D 74 (2006) 093012 [hep-ph/0605207] [SPIRES].

    ADS  Google Scholar 

  42. T. Flacke, A. Menon and D.J. Phalen, Non-minimal universal extra dimensions, Phys. Rev. D 79 (2009) 056009 [arXiv:0811.1598] [SPIRES].

    ADS  Google Scholar 

  43. Y. Hosotani, P. Ko and M. Tanaka, Stable Higgs Bosons as Cold Dark Matter, Phys. Lett. B 680 (2009) 179 [arXiv:0908.0212] [SPIRES].

    ADS  Google Scholar 

  44. Y. Hosotani, M. Tanaka and N. Uekusa, H parity and the stable Higgs boson in the SO(5) × U(1) gauge-Higgs unification, Phys. Rev. D 82 (2010) 115024 [arXiv:1010.6135] [SPIRES].

    ADS  Google Scholar 

  45. N. Haba, S. Matsumoto, N. Okada and T. Yamashita, Gauge-Higgs Dark Matter, JHEP 03 (2010) 064 [arXiv:0910.3741] [SPIRES].

    Article  ADS  Google Scholar 

  46. H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  47. A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett. B 486 (2000) 153 [hep-ph/9911294] [SPIRES].

    ADS  Google Scholar 

  48. Y. Grossman and M. Neubert, Neutrino masses and mixings in non-factorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  49. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. B. Holdom and J. Terning, Large corrections to electroweak parameters in technicolor theories, Phys. Lett. B 247 (1990) 88 [SPIRES].

    ADS  Google Scholar 

  51. M. Golden and L. Randall, Radiative Corrections To Electroweak Parameters In Technicolor Theories, Nucl. Phys. B 361 (1991) 3 [SPIRES].

    Article  ADS  Google Scholar 

  52. H. Georgi, Effective field theory and electroweak radiative corrections, Nucl. Phys. B 363 (1991) 301 [SPIRES].

    Article  ADS  Google Scholar 

  53. R. Barbieri and A. Strumia, What is the limit on the Higgs mass?, Phys. Lett. B 462 (1999) 144 [hep-ph/9905281] [SPIRES].

    ADS  Google Scholar 

  54. C. Csáki, J. Erlich and J. Terning, The effective Lagrangian in the Randall-Sundrum model and electroweak physics, Phys. Rev. D 66 (2002) 064021 [hep-ph/0203034] [SPIRES].

    ADS  Google Scholar 

  55. J. de Blas, A. Falkowski, M. Pérez-Victoria and S. Pokorski, Tools for deconstructing gauge theories in AdS 5, JHEP 08 (2006) 061 [hep-th/0605150] [SPIRES].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haba, N., Oda, Ky. & Takahashi, R. Dirichlet Higgs as radion stabilizer in warped compactification. J. High Energ. Phys. 2011, 125 (2011). https://doi.org/10.1007/JHEP05(2011)125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)125

Keywords

Navigation