Skip to main content
Log in

On the gauge boson’s properties in a candidate technicolor theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The technicolor scenario replaces the Higgs sector of the standard model with a strongly interacting sector. One candidate for a realization of such a sector is two-technicolor Yang-Mills theory coupled to two degenerate flavors of adjoint, massless techniquarks.

Using lattice gauge theory the properties of the technigluons in this scenario are investigated as a function of the techniquark mass towards the massless limit. For that purpose the minimal Landau gauge two-point and three-point correlation functions are determined, including a detailed systematic error analysis.

The results are, within the relatively large systematic uncertainties, compatible with a behavior very similar to QCD at finite techniquark mass. However, the limit of massless techniquarks exhibits features which could be compatible with a (quasi-)conformal behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.E. Morrissey, T. Plehn and T.M.P. Tait, Physics searches at the LHC, arXiv:0912.3259 [SPIRES].

  2. D.J.E. Callaway, Triviality pursuit: can elementary scalar particles exist?, Phys. Rept. 167 (1988) 241 [SPIRES].

    Article  ADS  Google Scholar 

  3. M. Bohm, A. Denner and H. Joos, Gauge theories of the strong and electroweak interaction, Teubner, Stuttgart Germany (2001), p. 784.

    Book  Google Scholar 

  4. F. Sannino, Conformal dynamics for TeV physics and cosmology, Acta Phys. Polon. B 40 (2009) 3533 [arXiv:0911.0931] [SPIRES].

    Google Scholar 

  5. C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [hep-ph/0203079] [SPIRES].

    Article  ADS  Google Scholar 

  6. K. Lane, Two lectures on technicolor, hep-ph/0202255 [SPIRES].

  7. L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, Mesonic spectroscopy of Minimal Walking Technicolor, Phys. Rev. D 82 (2010) 014509 [arXiv:1004.3197] [SPIRES].

    ADS  Google Scholar 

  8. L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, The infrared dynamics of Minimal Walking Technicolor, Phys. Rev. D 82 (2010) 014510 [arXiv:1004.3206] [SPIRES].

    ADS  Google Scholar 

  9. F. Bursa, L. Del Debbio, L. Keegan, C. Pica and T. Pickup, Mass anomalous dimension in SU(2) with two adjoint fermions, Phys. Rev. D 81 (2010) 014505 [arXiv:0910.4535] [SPIRES].

    ADS  Google Scholar 

  10. L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, Conformal vs. confining scenario in SU(2) with adjoint fermions, Phys. Rev. D 80 (2009) 074507 [arXiv:0907.3896] [SPIRES].

    ADS  Google Scholar 

  11. S. Catterall, J. Giedt, F. Sannino and J. Schneible, Phase diagram of SU(2) with 2 flavors of dynamical adjoint quarks, JHEP 11 (2008) 009 [arXiv:0807.0792] [SPIRES].

    Article  ADS  Google Scholar 

  12. S. Catterall and F. Sannino, Minimal walking on the lattice, Phys. Rev. D 76 (2007) 034504 [arXiv:0705.1664] [SPIRES].

    ADS  Google Scholar 

  13. A.J. Hietanen, J. Rantaharju, K. Rummukainen and K. Tuominen, Spectrum of SU(2) lattice gauge theory with two adjoint Dirac flavours, JHEP 05 (2009) 025 [arXiv:0812.1467] [SPIRES].

    Article  ADS  Google Scholar 

  14. A.J. Hietanen, K. Rummukainen and K. Tuominen, Evolution of the coupling constant in SU(2) lattice gauge theory with two adjoint fermions, Phys. Rev. D 80 (2009) 094504 [arXiv:0904.0864] [SPIRES].

    ADS  Google Scholar 

  15. T. DeGrand and A. Hasenfratz, Remarks on lattice gauge theories with infrared-attractive fixed points, Phys. Rev. D 80 (2009) 034506 [arXiv:0906.1976] [SPIRES].

    ADS  Google Scholar 

  16. T. DeGrand, Y. Shamir and B. Svetitsky, Infrared fixed point in SU(2) gauge theory with adjoint fermions, Phys. Rev. D 83 (2011) 074507 [arXiv:1102.2843] [SPIRES].

    ADS  Google Scholar 

  17. B. Lucini, Strongly interacting dynamics beyond the standard model on a spacetime lattice, arXiv:0911.0020 [SPIRES].

  18. S. Catterall, J. Giedt, F. Sannino and J. Schneible, Probes of nearly conformal behavior in lattice simulations of minimal walking technicolor, arXiv:0910.4387 [SPIRES].

  19. Y. Frishman and J. Sonnenschein, Non-perturbative field theory: from two-dimensional conformal field theory to QCD in four dimensions, Cambridge University Press, Cambridge U.K. (2010).

    Book  MATH  Google Scholar 

  20. R. Alkofer and L. von Smekal, The infrared behavior of QCD Green’s functions: confinement, dynamical symmetry breaking and hadrons as relativistic bound states, Phys. Rept. 353 (2001) 281 [hep-ph/0007355] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  21. C.S. Fischer, Infrared properties of QCD from Dyson-Schwinger equations, J. Phys. G 32 (2006) R253 [hep-ph/0605173] [SPIRES].

    ADS  Google Scholar 

  22. A. Maas, Gauges, propagators and physics, arXiv:1011.5409 [SPIRES].

  23. R. Alkofer, C.S. Fischer and R. Williams, U A (1) anomaly and η′ mass from an infrared singular quark-gluon vertex, Eur. Phys. J. A 38 (2008) 53 [arXiv:0804.3478] [SPIRES].

    ADS  Google Scholar 

  24. J. Braun, L.M. Haas, F. Marhauser and J.M. Pawlowski, Phase structure of two-flavor QCD at finite chemical potential, Phys. Rev. Lett. 106 (2011) 022002 [arXiv:0908.0008] [SPIRES].

    Article  ADS  Google Scholar 

  25. C.S. Fischer, A. Maas and J.A. Muller, Chiral and deconfinement transition from correlation functions: SU(2) vs. SU(3), Eur. Phys. J. C 68 (2010) 165 [arXiv:1003.1960] [SPIRES].

    Article  ADS  Google Scholar 

  26. M. Blank, A. Krassnigg and A. Maas, Rho-meson, Bethe-Salpeter equation and the far infrared, Phys. Rev. D 83 (2011) 034020 [arXiv:1007.3901] [SPIRES].

    ADS  Google Scholar 

  27. J.M. Pawlowski, The QCD phase diagram: results and challenges, arXiv:1012.5075 [SPIRES].

  28. D. Binosi and J. Papavassiliou, Pinch technique: theory and applications, Phys. Rept. 479 (2009) 1 [arXiv:0909.2536] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. D. Dudal, M.S. Guimaraes and S.P. Sorella, Glueball masses from an infrared moment problem and nonperturbative Landau gauge, Phys. Rev. Lett. 106 (2011) 062003 [arXiv:1010.3638] [SPIRES].

    Article  ADS  Google Scholar 

  30. V. Elias and M.D. Scadron, Scalar boson masses in dynamically broken gauge theories, Phys. Rev. Lett. 53 (1984) 1129 [SPIRES].

    Article  ADS  Google Scholar 

  31. H. Gies and J. Jaeckel, Chiral phase structure of QCD with many flavors, Eur. Phys. J. C 46 (2006) 433 [hep-ph/0507171] [SPIRES].

    Article  ADS  Google Scholar 

  32. J. Braun and H. Gies, Scaling laws near the conformal window of many-flavor QCD, JHEP 05 (2010) 060 [arXiv:0912.4168] [SPIRES].

    Article  ADS  Google Scholar 

  33. A.C. Aguilar and J. Papavassiliou, Chiral symmetry breaking with lattice propagators, Phys. Rev. D 83 (2011) 014013 [arXiv:1010.5815] [SPIRES].

    ADS  Google Scholar 

  34. A. Doff and A.A. Natale, Scalar bosons in minimal and ultraminimal technicolor: masses, trilinear couplings and widths, Phys. Rev. D 81 (2010) 095014 [arXiv:0912.1003] [SPIRES].

    ADS  Google Scholar 

  35. J. Braun, C.S. Fischer and H. Gies, Beyond Miransky scaling, arXiv:1012.4279 [SPIRES].

  36. L. Del Debbio, A. Patella and C. Pica, Higher representations on the lattice: numerical simulations. SU(2) with adjoint fermions, Phys. Rev. D 81 (2010) 094503 [arXiv:0805.2058] [SPIRES].

    ADS  Google Scholar 

  37. A. Maas, More on Gribov copies and propagators in Landau-gauge Yang-Mills theory, Phys. Rev. D 79 (2009) 014505 [arXiv:0808.3047] [SPIRES].

    ADS  Google Scholar 

  38. A. Cucchieri, A. Maas and T. Mendes, Exploratory study of three-point Green’s functions in Landau-gauge Yang-Mills theory, Phys. Rev. D 74 (2006) 014503 [hep-lat/0605011] [SPIRES].

    ADS  Google Scholar 

  39. C.S. Fischer, A. Maas and J.M. Pawlowski, On the infrared behavior of Landau gauge Yang-Mills theory, Annals Phys. 324 (2009) 2408 [arXiv:0810.1987] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. V.N. Gribov, Quantization of non-abelian gauge theories, Nucl. Phys. B 139 (1978) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. I.M. Singer, Some remarks on the Gribov ambiguity, Commun. Math. Phys. 60 (1978) 7 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  42. A. Cucchieri and T. Mendes, Critical slowing-down in SU(2) Landau gauge-fixing algorithms, Nucl. Phys. B 471 (1996) 263 [hep-lat/9511020] [SPIRES].

    Article  ADS  Google Scholar 

  43. A. Maas, On the gauge-algebra dependence of Landau-gauge Yang-Mills propagators, JHEP 02 (2011) 076 [arXiv:1012.4284] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  44. L. von Smekal, K. Maltman and A. Sternbeck, The strong coupling and its running to four loops in a minimal MOM scheme, Phys. Lett. B 681 (2009) 336 [arXiv:0903.1696] [SPIRES].

    ADS  Google Scholar 

  45. L. von Smekal, A. Hauck and R. Alkofer, A solution to coupled Dyson-Schwinger equations for gluons and ghosts in Landau gauge, Ann. Phys. 267 (1998) 1 [hep-ph/9707327] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  46. P. Cvitanović, Group theory, Princeton University Press, Princeton U.S.A. (2008).

    MATH  Google Scholar 

  47. A. Cucchieri, T. Mendes and A. Mihara, Numerical study of the ghost-gluon vertex in Landau gauge, JHEP 12 (2004) 012 [hep-lat/0408034] [SPIRES].

    Article  ADS  Google Scholar 

  48. J.S. Ball and T.-W. Chiu, Analytic properties of the vertex function in gauge theories. 2, Phys. Rev. D 22 (1980) 2550 [SPIRES].

    ADS  Google Scholar 

  49. A. Maas, Two- and three-point Green’s functions in two-dimensional Landau-gauge Yang-Mills theory, Phys. Rev. D 75 (2007) 116004 [arXiv:0704.0722] [SPIRES].

    ADS  Google Scholar 

  50. A. Cucchieri and T. Mendes, Infrared behavior of gluon and ghost propagators from asymmetric lattices, Phys. Rev. D 73 (2006) 071502 [hep-lat/0602012] [SPIRES].

    ADS  Google Scholar 

  51. A. Cucchieri, A. Maas and T. Mendes, Infrared properties of propagators in Landau-gauge pure Yang-Mills theory at finite temperature, Phys. Rev. D 75 (2007) 076003 [hep-lat/0702022] [SPIRES].

    ADS  Google Scholar 

  52. P.J. Silva and O. Oliveira, Infrared gluon propagator from lattice QCD: results from large asymmetric lattices, Phys. Rev. D 74 (2006) 034513 [hep-lat/0511043] [SPIRES].

    ADS  Google Scholar 

  53. A. Cucchieri and T. Mendes, Constraints on the IR behavior of the ghost propagator in Yang-Mills theories, Phys. Rev. D 78 (2008) 094503 [arXiv:0804.2371] [SPIRES].

    ADS  Google Scholar 

  54. A. Cucchieri and T. Mendes, Constraints on the IR behavior of the gluon propagator in Yang-Mills theories, Phys. Rev. Lett. 100 (2008) 241601 [arXiv:0712.3517] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. V.G. Bornyakov, V.K. Mitrjushkin and M. Muller-Preussker, SU(2) lattice gluon propagator: continuum limit, finite-volume effects and infrared mass scale m IR, Phys. Rev. D 81 (2010) 054503 [arXiv:0912.4475] [SPIRES].

    ADS  Google Scholar 

  56. I.L. Bogolubsky, E.M. Ilgenfritz, M. Muller-Preussker and A. Sternbeck, Lattice gluodynamics computation of Landau gauge Green’s functions in the deep infrared, Phys. Lett. B 676 (2009) 69 [arXiv:0901.0736] [SPIRES].

    ADS  Google Scholar 

  57. C.S. Fischer, A. Maas, J.M. Pawlowski and L. von Smekal, Large volume behaviour of Yang-Mills propagators, Annals Phys. 322 (2007) 2916 [hep-ph/0701050] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  58. A. Cucchieri, A. Maas and T. Mendes, Three-point vertices in Landau-gauge Yang-Mills theory, Phys. Rev. D 77 (2008) 094510 [arXiv:0803.1798] [SPIRES].

    ADS  Google Scholar 

  59. W. Schleifenbaum, A. Maas, J. Wambach and R. Alkofer, Infrared behaviour of the ghost gluon vertex in Landau gauge Yang-Mills theory, Phys. Rev. D 72 (2005) 014017 [hep-ph/0411052] [SPIRES].

    ADS  Google Scholar 

  60. E.M. Ilgenfritz, M. Muller-Preussker, A. Sternbeck, A. Schiller and I.L. Bogolubsky, Landau gauge gluon and ghost propagators from lattice QCD, Braz. J. Phys. 37 (2007) 193 [hep-lat/0609043] [SPIRES].

    Article  Google Scholar 

  61. C.S. Fischer and J.M. Pawlowski, Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory II, Phys. Rev. D 80 (2009) 025023 [arXiv:0903.2193] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  62. R. Alkofer, M.Q. Huber and K. Schwenzer, Infrared singularities in Landau gauge Yang-Mills theory, Phys. Rev. D 81 (2010) 105010 [arXiv:0801.2762] [SPIRES].

    ADS  Google Scholar 

  63. A. Cucchieri, Numerical study of the fundamental modular region in the minimal Landau gauge, Nucl. Phys. B 521 (1998) 365 [hep-lat/9711024] [SPIRES].

    Article  ADS  Google Scholar 

  64. A. Cucchieri and T. Mendes, Further investigation of massive Landau-gauge propagators in the infrared limit, PoS(LATTICE 2010)280 [arXiv:1101.4537] [SPIRES].

  65. W. Kamleh, P.O. Bowman, D.B. Leinweber, A.G. Williams and J. Zhang, Unquenching effects in the quark and gluon propagator, Phys. Rev. D 76 (2007) 094501 [arXiv:0705.4129] [SPIRES].

    ADS  Google Scholar 

  66. A. Maas, Constructing non-perturbative gauges using correlation functions, Phys. Lett. B 689 (2010) 107 [arXiv:0907.5185] [SPIRES].

    ADS  Google Scholar 

  67. D. Zwanziger, Fundamental modular region, Boltzmann factor and area law in lattice gauge theory, Nucl. Phys. B 412 (1994) 657 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  68. V.G. Bornyakov, V.K. Mitrjushkin and M. Müller-Preussker, Infrared behavior and Gribov ambiguity in SU(2) lattice gauge theory, Phys. Rev. D 79 (2009) 074504 [arXiv:0812.2761] [SPIRES].

    ADS  Google Scholar 

  69. A. Maas, On gauge fixing, PoS(LATTICE 2010)279 [arXiv:1010.5718] [SPIRES].

  70. A. Cucchieri, Gribov copies in the minimal Landau gauge: the influence on gluon and ghost propagators, Nucl. Phys. B 508 (1997) 353 [hep-lat/9705005] [SPIRES].

    Article  ADS  Google Scholar 

  71. A. Maas, Accessing directly the properties of fundamental scalars in the confinement and Higgs phase, Eur. Phys. J. C 71 (2011) 1548 [arXiv:1007.0729] [SPIRES].

    ADS  Google Scholar 

  72. A. Sternbeck and L. von Smekal, Infrared exponents and the strong-coupling limit in lattice Landau gauge, Eur. Phys. J. C 68 (2010) 487 [arXiv:0811.4300] [SPIRES].

    Article  ADS  Google Scholar 

  73. C. Gattringer and C.B. Lang, Quantum chromodynamics on the lattice, Lecture Notes in Physics, volume 788, Springer, U.S.A. (2010).

    Book  Google Scholar 

  74. V.A. Miransky, Dynamics in the conformal window in QCD like theories, Phys. Rev. D 59 (1999) 105003 [hep-ph/9812350] [SPIRES].

    ADS  Google Scholar 

  75. R. Brun and F. Rademakers, ROOT: an object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Maas.

Additional information

ArXiv ePrint: 1102.5023

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maas, A. On the gauge boson’s properties in a candidate technicolor theory. J. High Energ. Phys. 2011, 77 (2011). https://doi.org/10.1007/JHEP05(2011)077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)077

Keywords

Navigation