Skip to main content
Log in

Comments on Galilean conformal field theories and their geometric realization

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss non-relativistic conformal algebras generalizing the Schrödinger algebra. One instance of these algebras is a conformal, acceleration-extended, Galilei algebra, which arises also as a contraction of the relativistic conformal algebra. In two dimensions, this admits an “exotic” central extension, whereby boosts do not commute. We study general properties of non-relativistic conformal field theories with such symmetry. We realize geometrically the symmetry in terms of a metric invariant under the exotic conformal Galilei algebra, although its signature is neither Lorentzian nor Euclidean. We comment on holographic-type calculations in this background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. Y. Nishida and D.T. Son, Nonrelativistic conformal field theories, Phys. Rev. D 76 (2007) 086004 [arXiv:0706.3746] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. C.P. Herzog, M. Rangamani and S.F. Ross, Heating up Galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Adams, K. Balasubramanian and J. McGreevy, Hot Spacetimes for Cold Atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [SPIRES].

    Article  ADS  Google Scholar 

  7. G. Burdet, M. Perrin and P. Sorba, About the Non-Relativistic Structure of the Conformal Algebra, Commun. Math. Phys. 34 (1973) 85.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. C. Duval, G. Burdet, H.P. Künzle and M. Perrin, Bargmann Structures and Newton-Cartan Theory, Phys. Rev. D 31 (1985) 1841 [SPIRES].

    ADS  Google Scholar 

  9. C. Duval, G.W. Gibbons and P. Horváthy, Celestial Mechanics, Conformal Structures and Gravitational Waves, Phys. Rev. D 43 (1991) 3907 [hep-th/0512188] [SPIRES].

    ADS  Google Scholar 

  10. A. Bergman and O.J. Ganor, Dipoles, twists and noncommutative gauge theory, JHEP 10 (2000) 018 [hep-th/0008030] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. J. Negro, M.A. del Olmo and A. Rodríguez-Marco, Nonrelativistic Conformal Groups. I, J. Math. Phys. 38 (1997) 3786.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. J. Negro, M. A. del Olmo and A. Rodríguez-Marco, Nonrelativistic Conformal Groups. II. Further Developments and Physical Applications, J. Math. Phys. 38 (1997) 3810.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. C. Duval and P.A. Horváthy, The exotic Galilei group and the ’Peierls substitution’, Phys. Lett. B 479 (2000) 284 [hep-th/0002233] [SPIRES].

    ADS  Google Scholar 

  15. S. Bhattacharyya, S. Minwalla and S.R. Wadia, The Incompressible Non-Relativistic Navier-Stokes Equation from Gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. I. Fouxon and Y. Oz, CFT Hydrodynamics: Symmetries, Exact Solutions and Gravity, JHEP 03 (2009) 120 [arXiv:0812.1266] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. P.A. Horváthy, Non-commutative mechanics, in mathematical & in condensed matter physics, SIGMA 2 (2006) 090 [cond-mat/0609571] [SPIRES].

    Google Scholar 

  18. P.C. Stichel and W.J. Zakrzewski, A New Type of Conformal Dynamics, Annals Phys. 310 (2004) 158 [hep-th/0309038] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. J. Lukierski, P.C. Stichel and W.J. Zakrzewski, Acceleration-Extended Galilean Symmetries with Central Charges and their Dynamical Realizations, Phys. Lett. B 650 (2007) 203 [hep-th/0702179] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. C. Duval, M. Hassaine and P.A. Horváthy, The geometry of Schrödinger symmetry in gravity background/non-relativistic CFT, Annals Phys. 324 (2009) 1158 [arXiv:0809.3128] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  21. V. Bargmann, On Unitary ray representations of continuous groups, Annals Math. 59 (1954) 1 [SPIRES].

    Article  MathSciNet  Google Scholar 

  22. E. İnönü and E.P. Wigner, On the Contraction of groups and their represenations, Proc. Nat. Acad. Sci. 39 (1953) 510 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. R. Jackiw and V.P. Nair, Anyon spin and the exotic central extension of the planar Galilei group, Phys. Lett. B 480 (2000) 237 [hep-th/0003130] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. R. Jackiw and V.P. Nair, Remarks on the exotic central extension of the planar Galilei group, Phys. Lett. B 551 (2003) 166 [hep-th/0211119] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. C. Duval and P.A. Horváthy, Spin and exotic Galilean symmetry, Phys. Lett. B 547 (2002) 306 [hep-th/0209166] [SPIRES].

    ADS  Google Scholar 

  26. J. Lukierski, P.C. Stichel and W.J. Zakrzewski, Exotic Galilean conformal symmetry and its dynamical realisations, Phys. Lett. A 357 (2006) 1 [hep-th/0511259] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from \( \mathcal{N} = 4 \) super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Kruczenski and A.A. Tseytlin, Spiky strings, light-like Wilson loops and pp-wave anomaly, Phys. Rev. D 77 (2008) 126005 [arXiv:0802.2039] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. P.A. Horváthy and M.S. Plyushchay, Anyon wave equations and the noncommutative plane, Phys. Lett. B 595 (2004) 547 [hep-th/0404137] [SPIRES].

    ADS  Google Scholar 

  30. A. Bagchi and R. Gopakumar, Galilean Conformal Algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Alishahiha, A. Davody and A. Vahedi, On AdS/CFT of Galilean Conformal Field Theories, JHEP 08 (2009) 022 [arXiv:0903.3953] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Bagchi and I. Mandal, On Representations and Correlation Functions of Galilean Conformal Algebras, Phys. Lett. B 675 (2009) 393 [arXiv:0903.4524] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. M. Henkel, Schrödinger invariance in strongly anisotropic critical systems, J. Stat. Phys. 75 (1994) 1023 [hep-th/9310081] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  34. M. Henkel and J. Unterberger, Schrödinger invariance and space-time symmetries, Nucl. Phys. B 660 (2003) 407 [hep-th/0302187] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. M. Alishahiha, R. Fareghbal, A.E. Mosaffa and S. Rouhani, Asymptotic symmetry of geometries with Schrödinger isometry, arXiv:0902.3916 [SPIRES].

  36. J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. J.M. Lévy-Leblond, Galilei Group and Galilean Invariance, in Group Theory and Its Applications, Vol.2, E. Loebl eds., Academic Press, New York U.S.A. (1971) pg. 221.

    Google Scholar 

  38. D.R. Grigore, The Projective unitary irreducible representations of the Galilei group in (1 + 2)-dimensions, J. Math. Phys. 37 (1996) 460 [hep-th/9312048] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. S.K. Bose, The Galilean group in (2 + 1) space-times and its central extension, Commun. Math. Phys. 169 (1995) 385 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  40. J. Lukierski, P.C. Stichel and W.J. Zakrzewski, Galilean-invariant (2 + 1)-dimensional models with a Chern-Simons-like term and D = 2 noncommutative geometry, Annals Phys. 260 (1997) 224 [hep-th/9612017] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. M.A. del Olmo and M.S. Plyushchay, Electric Chern-Simons term, enlarged exotic Galilei symmetry and noncommutative plane, Annals Phys. 321 (2006) 2830 [hep-th/0508020] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  42. J.-M. Lévy-Leblond, Nonrelativistic Particles and Wave Equations, Comm. Math. Phys. 6 (1967) 286.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. Y. Nakayama, Index for Non-relativistic Superconformal Field Theories, JHEP 10 (2008) 083 [arXiv:0807.3344] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. K.-M. Lee, S. Lee and S. Lee, Nonrelativistic Superconformal M2-Brane Theory, JHEP 09 (2009) 030 [arXiv:0902.3857] [SPIRES].

    Article  ADS  Google Scholar 

  45. A. Volovich and C. Wen, Correlation Functions in Non-Relativistic Holography, JHEP 05 (2009) 087 [arXiv:0903.2455] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. C.A. Fuertes and S. Moroz, Correlation functions in the non-relativistic AdS/CFT correspondence, Phys. Rev. D 79 (2009) 106004 [arXiv:0903.1844] [SPIRES].

    ADS  Google Scholar 

  47. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  48. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  49. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N} = 6 \) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Tachikawa.

Additional information

ArXiv ePrint: 0903.5184

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martelli, D., Tachikawa, Y. Comments on Galilean conformal field theories and their geometric realization. J. High Energ. Phys. 2010, 91 (2010). https://doi.org/10.1007/JHEP05(2010)091

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2010)091

Keywords

Navigation