Skip to main content
Log in

Asymmetric dark matter from leptogenesis

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a new realization of asymmetric dark matter in which the dark matter and lepton asymmetries are generated simultaneously through two-sector leptogenesis. The right-handed neutrinos couple both to the Standard Model and to a hidden sector where the dark matter resides. This framework explains the lepton asymmetry, dark matter abundance and neutrino masses all at once. In contrast to previous realizations of asymmetric dark matter, the model allows for a wide range of dark matter masses, from keV to 10 TeV. In particular, very light dark matter can be accommodated without violating experimental constraints. We discuss several variants of our model that highlight interesting phenomenological possibilities. In one, late decays repopulate the symmetric dark matter component, providing a new mechanism for generating a large annihilation rate at the present epoch and allowing for mixed warm/cold dark matter. In a second scenario, dark matter mixes with the active neutrinos, thus presenting a distinct method to populate sterile neutrino dark matter through leptogenesis. At late times, oscillations and dark matter decays lead to interesting indirect detection signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [SPIRES].

    ADS  Google Scholar 

  2. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [SPIRES].

    Article  ADS  Google Scholar 

  3. G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [SPIRES].

    Article  ADS  Google Scholar 

  4. S. Nussinov, Technocosmology: could a technibaryon excess provide a ’natural’ missing mass candidate?, Phys. Lett. B 165 (1985) 55 [SPIRES].

    ADS  Google Scholar 

  5. D.B. Kaplan, A Single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741 [SPIRES].

    Article  ADS  Google Scholar 

  6. D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [SPIRES].

    ADS  Google Scholar 

  7. T. Cohen, D.J. Phalen, A. Pierce and K.M. Zurek, Asymmetric Dark Matter from a GeV Hidden Sector, Phys. Rev. D 82 (2010) 056001 [arXiv:1005.1655] [SPIRES].

    ADS  Google Scholar 

  8. G.R. Farrar and G. Zaharijas, Dark matter and the baryon asymmetry of the universe, hep-ph/0406281 [SPIRES].

  9. D. Hooper, J. March-Russell and S.M. West, Asymmetric sneutrino dark matter and the Omega(b)/Omega(DM) puzzle, Phys. Lett. B 605 (2005) 228 [hep-ph/0410114] [SPIRES].

    ADS  Google Scholar 

  10. R. Kitano and I. Low, Dark matter from baryon asymmetry, Phys. Rev. D 71 (2005) 023510 [hep-ph/0411133] [SPIRES].

    ADS  Google Scholar 

  11. K. Agashe and G. Servant, Baryon number in warped GUTs: Model building and (dark matter related) phenomenology, JCAP 02 (2005) 002 [hep-ph/0411254] [SPIRES].

    ADS  Google Scholar 

  12. R. Kitano, H. Murayama and M. Ratz, Unified origin of baryons and dark matter, Phys. Lett. B 669 (2008) 145 [arXiv:0807.4313] [SPIRES].

    ADS  Google Scholar 

  13. E. Nardi, F. Sannino and A. Strumia, Decaying Dark Matter can explain the electron/positron excesses, JCAP 01 (2009) 043 [arXiv:0811.4153] [SPIRES].

    ADS  Google Scholar 

  14. J. Shelton and K.M. Zurek, Darkogenesis: A baryon asymmetry from the dark matter sector, Phys. Rev. D 82 (2010) 123512 [arXiv:1008.1997] [SPIRES].

    ADS  Google Scholar 

  15. H. Davoudiasl, D.E. Morrissey, K. Sigurdson and S. Tulin, Hylogenesis: A Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter, Phys. Rev. Lett. 105 (2010) 211304 [arXiv:1008.2399] [SPIRES].

    Article  ADS  Google Scholar 

  16. N. Haba and S. Matsumoto, Baryogenesis from Dark Sector, arXiv:1008.2487 [SPIRES].

  17. P.-H. Gu, M. Lindner, U. Sarkar and X. Zhang, WIMP Dark Matter and Baryogenesis, arXiv:1009.2690 [SPIRES].

  18. M. Blennow, B. Dasgupta, E. Fernandez-Martinez and N. Rius, Aidnogenesis via Leptogenesis and Dark Sphalerons, JHEP 03 (2011) 014 [arXiv:1009.3159] [SPIRES].

    Article  ADS  Google Scholar 

  19. J. McDonald, Baryomorphosis: Relating the Baryon Asymmetry to the ’WIMP Miracle’, arXiv:1009.3227 [SPIRES].

  20. C. Cheung, G. Elor, L.J. Hall and P. Kumar, Origins of Hidden Sector Dark Matter I: Cosmology, JHEP 03 (2011) 042 [arXiv:1010.0022] [SPIRES].

    Article  ADS  Google Scholar 

  21. C. Cheung, G. Elor, L.J. Hall and P. Kumar, Origins of Hidden Sector Dark Matter II: Collider Physics, JHEP 03 (2011) 085 [arXiv:1010.0024] [SPIRES].

    Article  ADS  Google Scholar 

  22. L.J. Hall, J. March-Russell and S.M. West, A Unified Theory of Matter Genesis: Asymmetric Freeze-In, arXiv:1010.0245 [SPIRES].

  23. B. Dutta and J. Kumar, Asymmetric Dark Matter from Hidden Sector Baryogenesis, Phys. Lett. B 699 (2011) 364 [arXiv:1012.1341] [SPIRES].

    ADS  Google Scholar 

  24. B. Feldstein and A.L. Fitzpatrick, Discovering Asymmetric Dark Matter with Anti-Neutrinos, JCAP 09 (2010) 005 [arXiv:1003.5662] [SPIRES].

    ADS  Google Scholar 

  25. T. Cohen and K.M. Zurek, Leptophilic Dark Matter from the Lepton Asymmetry, Phys. Rev. Lett. 104 (2010) 101301 [arXiv:0909.2035] [SPIRES];

    Article  ADS  Google Scholar 

  26. M.R. Buckley and L. Randall, X ogenesis, arXiv:1009.0270 [SPIRES].

  27. N. Cosme, L. Lopez Honorez and M.H.G. Tytgat, Leptogenesis and dark matter related?, Phys. Rev. D 72 (2005) 043505 [hep-ph/0506320] [SPIRES].

    ADS  Google Scholar 

  28. P.-H. Gu, U. Sarkar and X. Zhang, Visible and Dark Matter Genesis and Cosmic Positron/Electron Excesses, Phys. Rev. D 80 (2009) 076003 [arXiv:0906.3103] [SPIRES].

    ADS  Google Scholar 

  29. P.-H. Gu and U. Sarkar, Common Origin of Visible and Dark Universe, Phys. Rev. D 81 (2010) 033001 [arXiv:0909.5463] [SPIRES].

    ADS  Google Scholar 

  30. H. An, S.-L. Chen, R.N. Mohapatra and Y. Zhang, Leptogenesis as a Common Origin for Matter and Dark Matter, JHEP 03 (2010) 124 [arXiv:0911.4463] [SPIRES].

    Article  ADS  Google Scholar 

  31. E.J. Chun, Leptogenesis origin of Dirac gaugino dark matter, Phys. Rev. D 83 (2011) 053004 [arXiv:1009.0983] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [SPIRES].

    Article  ADS  Google Scholar 

  33. E.K. Akhmedov, V.A. Rubakov and A.Y. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [SPIRES].

    Article  ADS  Google Scholar 

  34. K. Dick, M. Lindner, M. Ratz and D. Wright, Leptogenesis with Dirac neutrinos, Phys. Rev. Lett. 84 (2000) 4039 [hep-ph/9907562] [SPIRES].

    Article  ADS  Google Scholar 

  35. Y. Grossman, T. Kashti, Y. Nir and E. Roulet, Leptogenesis from Supersymmetry Breaking, Phys. Rev. Lett. 91 (2003) 251801 [hep-ph/0307081] [SPIRES].

    Article  ADS  Google Scholar 

  36. Y. Grossman, T. Kashti, Y. Nir and E. Roulet, New ways to soft leptogenesis, JHEP 11 (2004) 080 [hep-ph/0407063] [SPIRES].

    Article  ADS  Google Scholar 

  37. A. Kusenko, Sterile neutrinos: the dark side of the light fermions, Phys. Rept. 481 (2009) 1 [arXiv:0906.2968] [SPIRES];

    Article  ADS  Google Scholar 

  38. S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [SPIRES].

    ADS  Google Scholar 

  39. A. Arvanitaki, C. Davis, P.W. Graham, A. Pierce and J.G. Wacker, Limits on split supersymmetry from gluino cosmology, Phys. Rev. D 72 (2005) 075011 [hep-ph/0504210] [SPIRES].

    ADS  Google Scholar 

  40. J. Kang, M.A. Luty and S. Nasri, The Relic Abundance of Long-lived Heavy Colored Particles, JHEP 09 (2008) 086 [hep-ph/0611322] [SPIRES].

    Article  ADS  Google Scholar 

  41. M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest, Phys. Rev. D 71 (2005) 063534 [astro-ph/0501562] [SPIRES].

    ADS  Google Scholar 

  42. A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavour Issues in Leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [SPIRES].

    ADS  Google Scholar 

  43. E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [SPIRES].

    Article  ADS  Google Scholar 

  44. G. Engelhard, Y. Grossman, E. Nardi and Y. Nir, The importance of N2 leptogenesis, Phys. Rev. Lett. 99 (2007) 081802 [hep-ph/0612187] [SPIRES].

    Article  ADS  Google Scholar 

  45.  

  46. T. Kanzaki, M. Kawasaki, K. Kohri and T. Moroi, Cosmological constraints on neutrino injection, Phys. Rev. D 76 (2007) 105017 [arXiv:0705.1200] [SPIRES].

    ADS  Google Scholar 

  47. M. Kawasaki, K. Kohri and T. Moroi, Big-bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [SPIRES].

    ADS  Google Scholar 

  48. K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [SPIRES].

    ADS  Google Scholar 

  49. PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV , Nature 458 (2009) 607 [arXiv:0810.4995] [SPIRES].

    Article  ADS  Google Scholar 

  50. The FermiLAT collaboration, A.A. Abdo et al., Measurement of the Cosmic Ray e+ plus e-spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102 (2009) 181101 [arXiv:0905.0025] [SPIRES].

    Article  ADS  Google Scholar 

  51. H.E.S.S. collaboration, F. Aharonian et al., Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S, Astron. Astrophys. 508 (2009) 561 [arXiv:0905.0105] [SPIRES].

    Article  ADS  Google Scholar 

  52. N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [SPIRES].

    ADS  Google Scholar 

  53. J.L. Feng, M. Kaplinghat and H.-B. Yu, Sommerfeld Enhancements for Thermal Relic Dark Matter, Phys. Rev. D 82 (2010) 083525 [arXiv:1005.4678] [SPIRES].

    ADS  Google Scholar 

  54. D.P. Finkbeiner, L. Goodenough, T.R. Slatyer, M. Vogelsberger and N. Weiner, Consistent Scenarios for Cosmic-Ray Excesses from Sommerfeld-Enhanced Dark Matter Annihilation, JCAP 05 (2011) 002 [arXiv:1011.3082] [SPIRES].

    ADS  Google Scholar 

  55. T.R. Slatyer, N. Padmanabhan and D.P. Finkbeiner, CMB Constraints on W IMP Annihilation: Energy Absorption During the Recombination Epoch, Phys. Rev. D 80 (2009) 043526 [arXiv:0906.1197] [SPIRES].

    ADS  Google Scholar 

  56. M. Cirelli, F. Iocco and P. Panci, Constraints on Dark Matter annihilations from reionization and heating of the intergalactic gas, JCAP 10 (2009) 009 [arXiv:0907.0719] [SPIRES].

    ADS  Google Scholar 

  57. P. Meade, M. Papucci, A. Strumia and T. Volansky, Dark Matter Interpretations of the Electron/Positron Excesses after FERMI, Nucl. Phys. B 831 (2010) 178 [arXiv:0905.0480] [SPIRES].

    Article  ADS  Google Scholar 

  58. K. Jedamzik, M. Lemoine and G. Moultaka, Gravitino, Axino, Kaluza-Klein Graviton Warm and Mixed Dark Matter and Reionisation, JCAP 07 (2006) 010 [astro-ph/0508141] [SPIRES].

    ADS  Google Scholar 

  59. Y. Cai, M.A. Luty and D.E. Kaplan, Leptonic Indirect Detection Signals from Strongly Interacting Asymmetric Dark Matter, arXiv:0909.5499 [SPIRES].

  60. R. Barbieri and A. Dolgov, Bounds on Sterile-neutrinos from Nucleosynthesis, Phys. Lett. B 237 (1990) 440 [SPIRES].

    ADS  Google Scholar 

  61. S. Dodelson and L.M. Widrow, Sterile Neutrinos as Dark Matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [SPIRES].

    Article  ADS  Google Scholar 

  62. K. Abazajian, G.M. Fuller and M. Patel, Sterile neutrino hot, warm and cold dark matter, Phys. Rev. D 64 (2001) 023501 [astro-ph/0101524] [SPIRES].

    ADS  Google Scholar 

  63. M. Papucci and A. Strumia, Robust implications on Dark Matter from the first FERMI sky gamma map, JCAP 03 (2010) 014 [arXiv:0912.0742] [SPIRES].

    ADS  Google Scholar 

  64. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].

    Article  ADS  Google Scholar 

  65. J.T. Ruderman and T. Volansky, Decaying into the Hidden Sector, JHEP 02 (2010) 024 [arXiv:0908.1570] [SPIRES].

    Article  ADS  Google Scholar 

  66. J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New Fixed-Target Experiments to Search for Dark Gauge Forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [SPIRES].

    ADS  Google Scholar 

  67. J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [SPIRES].

    Article  ADS  Google Scholar 

  68. J.L. Feng, H. Tu and H.-B. Yu, Thermal Relics in Hidden Sectors, JCAP 10 (2008) 043 [arXiv:0808.2318] [SPIRES].

    ADS  Google Scholar 

  69. S. Das and K. Sigurdson, Cosmological Limits on Hidden Sector Dark Matter, arXiv:1012.4458 [SPIRES].

  70. C. Cheung, L. Hall and D. Pinner, work in progress.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Falkowski.

Additional information

ArXiv ePrint: 1101.4936

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falkowski, A., Ruderman, J.T. & Volansky, T. Asymmetric dark matter from leptogenesis. J. High Energ. Phys. 2011, 106 (2011). https://doi.org/10.1007/JHEP05(2011)106

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)106

Keywords

Navigation